
https://root.cern

ROOT
Data Analysis Framework

Impact of task granularity in
unbalanced worloads
Xavier Valls

https://root.cern

Task granularity

▶ Dividing the work at thread-level the traditional way (1 chunk/core) is not
optimal if the workload distribution between each of these partitions is
unbalanced.

▶ if a partition finishes earlier, will remain in idle state waiting for the
remaining ones to finish suboptimal exploitation of the hardware
resources.

▶ Potential solution: increasing the granularity of the data partitions
(creating more tasks).

Chunking in the executors

▶ TThreadExecutor: Available! Parameter in MapReduce to specify the
number of partitions.

▶ TProcessExecutor: Not available yet, adapted for this study

A simple benchmark

▶ conditional evaluation of two different implementations of the Vavilov
probability distribution function (VavilovFast and VavilovAccurate)

▶ VavilovFast is 5x faster than VavilovAccurate

▶ Negative Values of the data: VavilovFast. Positive values: Vavilov Accurate

▶ Two different distributions of the data

Case 1: slightly unbalanced

Random Gaussian with σ = 1 and μ = −0.25 for the first third of data elements,
σ = 1 and μ = 0.25, for the second third, and σ = 1 and μ = −0.75 for the
remaining third. 8 ∗ 10^7 points.

TProcessExecutor
(4 partitions, 2*10^7
elements/chunk)

TThreadExecutor
(4 partitions, 2*10^7
elements/chunk)

Case 1: slightly unbalanced

Random Gaussian with σ = 1 and μ = −0.25 for the first third of data elements,
σ = 1 and μ = 0.25, for the second third, and σ = 1 and μ = −0.75 for the
remaining third. 8 ∗ 10^7 points

TProcessExecutor
(8000 partitions,
 10^4 elements/chunk)

TThreadExecutor
(8000 partitions,
 10^4 elements/chunk)

Case 2: benchmark (Multiprocess)

Case 1: benchmark (Multithread I)

Case 1: benchmark (Multithread II)

▶ first two thirds of data: VavilovFast
▶ last third: VavilovAccurate

Case 2: extremely unbalanced

TProcessExecutor
(4 partitions, 2*10^7
elements/chunk)

TThreadExecutor
(4 partitions, 2*10^7
elements/chunk)

▶ first two thirds of data: VavilovFast
▶ last third: VavilovAccurate

Case 2: extremely unbalanced

TProcessExecutor
(8000 partitions,
 10^4 elements/chunk)

TThreadExecutor
(8000 partitions,
 10^4 elements/chunk)

Case 2: benchmark (Multiprocess)

Case 2: benchmark (Multithread I)

Case 2: benchmark (Multithread II)

Missing

▶ Take more measurements to see if the hyperthreading speed up in the
MT case with few data points stops fluctuating.

▶ Make a more fair comparison (same data points/ same points per chunk
in both examples)

▶ Quantify in terms of task overhead.

