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Task granularity

» Dividing the work at thread-level the traditional way (1 chunk/core) is not
optimal if the workload distribution between each of these partitions is
unbalanced.

» if a partition finishes earlier, will remain in idle state waiting for the
remaining ones to finish == suboptimal exploitation of the hardware
resources.

> Potential solution: increasing the granularity of the data partitions
(creating more tasks).



Chunking in the executors

» TThreadExecutor: Available! Parameter in MapReduce to specify the
number of partitions.

» TProcessExecutor: Not available yet, adapted for this study



A simple benchmark

» conditional evaluation of two different implementations of the Vavilov
probability distribution function (VavilovFast and VavilovAccurate)

» VavilovFast is 5x faster than VavilovAccurate

> Negative Values of the data: VavilovFast. Positive values: Vavilov Accurate

» Two different distributions of the data



Case 1: slightly unbalanced

Random Gaussian with 0 =1 and p = -0.25 for the first third of data elements,
o=1and p = 0.25, for the second third, and 6 = 1 and p = -0.75 for the
remaining third. 8 * 107 points.

TProcessExecutor
(4 partitions, 2*1077
elements/chunk)

TThreadExecutor
(4 partitions, 2*1077
elements/chunk)




Case 1: slightly unbalanced

Random Gaussian with 0 =1 and p = -0.25 for the first third of data elements,
o=1and p = 0.25, for the second third, and 6 = 1 and p = -0.75 for the

remaining third. 8 * 10A7 points

TProcessExecutor
(8000 partitions,
10”4 elements/chunk)

TThreadExecutor
(8000 partitions,
10”4 elements/chunk)



Speed up obtained with an increasing number of chunks, processing units and data points
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Speed up

Speed up obtained with an increasing number of chunks, threads and data points
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Speed up obtained with an increasing number of chunks, threads and data points
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Case 2: extremely unbalanced

» first two thirds of data; VavilovFast
» last third: VavilovAccurate

TProcessExecutor
(4 partitions, 2*10°7
elements/chunk)

TThreadExecutor
(4 partitions, 2*1077
elements/chunk)




Case 2: extremely unbalanced

» first two thirds of data; VavilovFast
» last third: VavilovAccurate

- TProcessExecutor
(8000 partitions,

R REREEBBRRRRY - 1014 elemeentts(chunk)

TThreadExecutor
(8000 partitions,
1074 elements/chunk)




Speed up obtained with an increasing number of chunks, processing units and data points
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Speed up obtained with an increasing number of chunks, threads and data points
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Case 2: benchmark (Multithread I1)

Speed up obtained with an increasing number of chunks, threads and data points
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Missing

Take more measurements to see if the hyperthreading speed up in the
MT case with few data points stops fluctuating.

Make a more fair comparison (same data points/ same points per chunk
in both examples)

Quantify in terms of task overhead.






