f

8

8

Bl

pact of task granc

nDalanced worloac

Xavier Valls

arity in
S


https://root.cern

Task granularity

» Dividing the work at thread-level the traditional way (1 chunk/core) is not
optimal if the workload distribution between each of these partitions is
unbalanced.

» if a partition finishes earlier, will remain in idle state waiting for the
remaining ones to finish == suboptimal exploitation of the hardware
resources.

> Potential solution: increasing the granularity of the data partitions
(creating more tasks).



Chunking in the executors

» TThreadExecutor: Available! Parameter in MapReduce to specify the
number of partitions.

» TProcessExecutor: Not available yet, adapted for this study



A simple benchmark

» conditional evaluation of two different implementations of the Vavilov
probability distribution function (VavilovFast and VavilovAccurate)

» VavilovFast is 5x faster than VavilovAccurate

> Negative Values of the data: VavilovFast. Positive values: Vavilov Accurate

» Two different distributions of the data



Case 1: slightly unbalanced

Random Gaussian with 0 =1 and p = -0.25 for the first third of data elements,
o=1and p = 0.25, for the second third, and 6 = 1 and p = -0.75 for the
remaining third. 8 * 107 points.

TProcessExecutor
(4 partitions, 2*1077
elements/chunk)

TThreadExecutor
(4 partitions, 2*1077
elements/chunk)




Case 1: slightly unbalanced

Random Gaussian with 0 =1 and p = -0.25 for the first third of data elements,
o=1and p = 0.25, for the second third, and 6 = 1 and p = -0.75 for the

remaining third. 8 * 10A7 points

TProcessExecutor
(8000 partitions,
10”4 elements/chunk)

TThreadExecutor
(8000 partitions,
10”4 elements/chunk)



Speed up obtained with an increasing number of chunks, processing units and data points

10000 points 100000 points 1000000 points

§ L m\‘

1e+01 16403 1e+05 16407 1e+01 16403 16405 16407 1e+01 1e+03 16405 1e+07
Chunks (data partitions)

1e+01

10000000 points

1e+03 1e+05

1e+07

workers
8

N WSO o N



Speed up

Speed up obtained with an increasing number of chunks, threads and data points

1000 points

100 points

1- \w‘m‘\/

100 10000 100 10000
Chunks (data partitions)

10000 points

10000

threads
8

N Wb oo N



Speed up obtained with an increasing number of chunks, threads and data points

100000 points 1000000 points 10000000 points

threads

N Wb oo N ®

16401 1403 16405 16407 1e+01 1e+03 16+05 16407 1e+01 1e+03 16405 1e+07
Chunks (data partitions)



Case 2: extremely unbalanced

» first two thirds of data; VavilovFast
» last third: VavilovAccurate

TProcessExecutor
(4 partitions, 2*10°7
elements/chunk)

TThreadExecutor
(4 partitions, 2*1077
elements/chunk)




Case 2: extremely unbalanced

» first two thirds of data; VavilovFast
» last third: VavilovAccurate

- TProcessExecutor
(8000 partitions,

R REREEBBRRRRY - 1014 elemeentts(chunk)

TThreadExecutor
(8000 partitions,
1074 elements/chunk)




Speed up obtained with an increasing number of chunks, processing units and data points

80000 points 800000 points 8000000 points

5-
4-

3 -

2-

1 -

®
Sonp—t-temtabena.y,
0 -
1e-;-01 1e+l-03 1e-;-05 1eL07 1e-:-01 18':'03 1e-;-05 1e+l-07 1e;-01 1e-;-03 1e4l-05 1e-;-07

Chunks (data partitions)

1e+01

80000000 points

1e+03 1e+05

1e+07

workers
8

N WSO o N



Speed up obtained with an increasing number of chunks, threads and data points

800 points 8000 points.

100 10000 100 10000
Chunks (data partitions)

80000 points

100

'
10000

threads
8

N W s O~



Case 2: benchmark (Multithread I1)

Speed up obtained with an increasing number of chunks, threads and data points

800000 points 8000000 points 80000000 points

threads
8

N WS oo N

1e+01 1e+03 16405 1e+07

1e+01 1403 16+05 16407 1e+01 16+03 16+05 16+07
Chunks (data partitions)



Missing

Take more measurements to see if the hyperthreading speed up in the
MT case with few data points stops fluctuating.

Make a more fair comparison (same data points/ same points per chunk
in both examples)

Quantify in terms of task overhead.






