0.1. ANALYSIS OF WORK PARTITIONING GRANULARITY IN THE EXECUTORS1

0.1 Analysis of work partitioning granularity in
the Executors

Dividing the work at thread-level the traditional way, i.e. in as many partitions as
processing units we have available, has a drawback: if, for instance, some of the
partitions finish earlier than others, the processing units will remain in idle state
waiting for the remaining ones to finish, leading to a suboptimal exploitation of the
hardware resources. However, we can mitigate the time workers spend in idle state
due to an unbalanced distribution of the workload by increasing the granularity of
the data partitions.

In this Section, we analyze the impact that the number of partitions we divide the
workload into has on the speed up obtained when parallelizing a job with ROOT’s
executors. Our analysis is executed over different sizes of data and an increasing
number of processing units, for both TProcessExecutor and TThreadExecutor. In
each case, we increase the number of tasks to execute, moving progressively from
coarse-grained partitions, e.g. dividing the workload in as many partitions as pro-
cessing units available, to the most fine-grained division, that is, one task per data
element.

For this purpose, we designed a benchmark consisting of the conditional evalua-
tion of two different implementations of the Vavilov probability distribution function—
fast and accurate—which provides us with a simple way to create imbalances in the
execution time for the chunks. The fast implementation of the Vavilov probability
density function [I] is about 5 times faster for the calculation of the distribution
function, while its accurate implementation [2] sacrifices speed for correctness. We
perform the evaluation of the Vavilov fast function on the positive values of a pro-
vided data set, and the Vavilov accurate evaluation on the negative values of the
same data set. Listing 1 showcases the code necessary to perform our benchmark
with an explicitly chunked MapReduce operation with TThreadExecutor, given a
container of data, data, and a number of chunks, nChunks.

This benchmark is executed on a Intel Core i7-4790 desktop server with 4 cores at
3.6 GHz and 8 GB of RAM, each core supporting hyperthreading, over two different
data sets, both of them generating unbalanced executions. The first data set is
generated randomly following a Gaussian distribution with ¢ = 1 and p = —0.25
for the first third of data elements, o = 1 and p = 0.25, for the second third, and
o =1 and pu = —0.75 for the remaining third.

Figure 1 displays the speed up results obtained for different sizes of the data set
when parallelizing with a different number of threads (including hyperthreading) in
TThreadExecutor, increasing the number of data partitions in each case. In Figure
la we can observe that, for 100 points, the execution time is dominated by the
task overhead, causing a slowdown in the total execution time, independently of the

// (... variable initialization: data, nChunks)

ROOT: :Math: :VavilovAccurate vavilovAc(0.3, 0.5);
ROOT: :Math: :VavilovFast vavilovFast(0.3, 0.5);

auto mapFunction = [&data, &vavilovAc, &vavilovFast] (const unsigned i){
return data[i]>07? vAccurate.Pdf(datal[i]) : vFast.Pdf(datal[il);
I8

auto redFunction = [](const std::vector<double> vec){
return std::accumulate(vec.begin(), vec.end(), .0);

»8

ROOT: : TThreadExecutor threadPool(nThreads);
auto partialRes = threadPool.Map(mapFunction, ROOT::TSeqU(data.size()), redFunction, nChunks);

Listing 1: Example code of our benchmark, computing the Vavilov probability den-
sity function in its fast implementation for negative values of the data, and its
accurate implementation for positive values of the same data.

number of partitions of the data. Results improve as we increase the dataset size
until stabilizing, as shown in Figure 1b. Here we observe significant results in speed
up, which improves slightly until, again, task overhead begins to negatively affect
the execution time when dealing with smaller tasks.

This example exhibits its best results when relying on hyperthreading. With
hyperthreading we observe a gradual, more pronounced, improvement in speed up,
reaching up to a remarkable 45% better speed up than the non-hyperthreaded case.
However it exhibits a more accentuated decline in speed up when the task creation
overhead starts to be noticeable.

Figure 2 shows the results obtained for a multiprocess execution with TProces-
sExecutor of the same example. While multiprocess execution is more useful in
several contexts (e.g. when performing non thread-safe operations), and results
display a good speed up for big data sets, the task overhead introduced by TPro-
cessExecutor is several orders of magnitude greater than that of TThreadExecutor,
requiring a greater amount of work for the speed up to be noticeable. For this same
reason, the plots in Figure 2 exhibit earlier decline of speed up with a higher number
of tasks.

The near-optimal speed up we obtain in the theoretically most unbalanced case
(dividing the workload into as many tasks as processing units), might indicate that
the data set may not be unbalanced enough to observe dramatic improvements
by tuning task granularity. We observe this situation in Figure 3, produced by
Intel’s Vtune Amplifier, where we visualize the performance trace of an execution
of our benchmark with 800 million points, 4 processing units and 4 tasks for both
TProcessExecutor and TThreadExecutor. Figure 4 shows the trace of an execution
with the same parameters but with an increase in the number of tasks to 8000,

0.1. ANALYSIS OF WORK PARTITIONING GRANULARITY IN THE EXECUTORS3

demonstrating improved workload balancing.

The second data set, which is more extremely unbalanced, is composed of two
differentiated parts: the first two thirds of the data set evaluate the fast version of
the Vavilov distribution and the remaining third performs the accurate evaluation.
Figure 5 demonstrates that this case exhibits a more accentuated imbalance between
the processing units. The orange trace in Figure 5a represents the spin and overhead
time of the main thread, after finishing its assigned tasks and while it waits for the
remaining threads to finish their execution. Again, we provide in Figure 6 a better
balanced example of the same execution, achieved by increasing the number of tasks
to 8000.

Figure 7 and Figure 8 present the results of executing our benchmark with this
second data set. They display, for the multithreaded and the multiprocessed cases,
respectively, the increased speed up we obtain when varying task granularity in
different pair configurations of number of threads and size of the workload. In this
case, we observe an earlier steeper increase in speed up for the higher values of the
chunk size, indicating the convenience of splitting tasks into smaller partitions. In
the last configuration of Figure 7b, we perceive a gradual decrease in speed up caused
by excessive fine-graining of the task, whose execution time becomes dominated by
the task overhead. Figure 8 exhibits, again, an earlier decay of the speed up due to
the higher task overhead inherent to a multiprocess solution.

These results support the importance of an adequate task size and showcase the
impact it might have on performance for unbalanced parallel workloads. Moreover,
they indicate that granularity has to be treated differently for the multithreaded
and the multiprocessed cases, keeping task creation overhead in mind.

Speed up obtained with an increasing number of chunks, threads and data points

100 points 1000 points 10000 points

T threads

Speed up
N
N W s 0o N

100 10000 100 10000 100 10000
Chunks (data partitions)

(a) Speed up for or 102, 10 and 10* data points.

Speed up obtained with an increasing number of chunks, threads and data points

100000 points 1000000 points 10000000 points

threads
8

Nw s oo N

1e+01 1e+03 1e+05 1407 1e+01 1e+03 1e+05 16407 1e+01 1e+03 1e+05 1e+07
Chunks (data partitions)

(b) Speed up for or 10, 10° and 107 data points.

Figure 1: Speed up obtained with TThreadExecutor for different number of data
points generated for the first benchmarking data set, divided into an increasing
number of chunks. The measures have been taken with different number of threads.

0.1. ANALYSIS OF WORK PARTITIONING GRANULARITY IN THE EXECUTORS5

Speed up obtained with an increasing number of chunks, processing units and data points
10000 points 100000 points. 1000000 points 10000000 points

workers
8

Speed up
N W s oo N

N ‘“\.

1401 16403 1e+05 1e07 1e+01 1e+03 16405 1e+07 1et01 1e403 1e+05 1407 1e+01 1e+03 1e+05 1e+07
Chunks (data partitions)
Figure 2: Speed up obtained with TProcessExecutor for different sizes of the data
and different number of chunks when benchmarking the first dataset. The measures
have been taken with different number of processing units

(a) Multithread execution with TThreadExecutor.

(b) Multiprocess execution with TProcessExecutor.

Figure 3: Thread monitoring for sample size of 8 x 107 points generated for the first
data set, divided into 4 partitions (2 * 107 points per chunk) and evaluated by 4
threads.

(a) Multithread execution with TThreadExecutor.

(b) Multiprocess execution with TProcessExecutor.

Figure 4: Thread monitoring for a sample size of 8 * 107 points generated for the
first data set, divided into 8000 partitions (10* points per chunk) and evaluated by
4 threads.

0.1. ANALYSIS OF WORK PARTITIONING GRANULARITY IN THE EXECUTORST

(a) Multithread execution with TThreadExecutor

(b) Multiprocess execution with TProcessExecutor.

Figure 5: Thread monitoring for sample size of 8 * 107 points generated for the
second data set, divided into 4 partitions (2 * 107 points per chunk) and evaluated
by 4 threads.

(a) Multithread execution with TThreadExecutor.

(b) Multiprocess execution with TProcessExecutor.

Figure 6: Thread monitoring for a sample size of 8 x 107 points generated for the
second data set, divided into 8000 partitions (10? points per chunk) and evaluated
by 4 threads.

Speed up obtained with an increasing number of chunks, threads and data points

800 points 8000 points. 80000 points

threads
8
S 3- 7
° 6
3 5
o
a 4
3
2
P
S
100 10000 100 10000 100 10000
Chunks (data partitions)
2 4 :
(a) Speed up for 102, 10% and 10* data points.
Speed up obtained with an increasing number of chunks, threads and data points
800000 points 8000000 points 80000000 points
5-
4-
threads
8
o 7
=]
° 6
3 5
Q.
2 4
3- 3
2
Pe
1e+01 1e+03 1e+05 1407 1e+01 1e+03 1e+05 16407 1e+01 1e+03 1e+05 1e+07

Chunks (data partitions)

(b) Speed up for or 10, 10° and 107 data points.

Figure 7: Speed up obtained with TThreadExecutor for different number of data
points of the second benchmarking dataset and an increasing number of chunks. The
measures have been taken with different number of threads.

0.1. ANALYSIS OF WORK PARTITIONING GRANULARITY IN THE EXECUTORS9

Speed up obtained with an increasing number of chunks, processing units and data points
80000 points. 800000 points 8000000 points 80000000 points
5-

workers
8

Nw s oo~

16401 1e403 1e+05 1e+07 1e+01 1e+03 1e+05 1e+07 1e+01 1e+03 1e+05 1e+07 1e+01 1e+03 1e+05 1e+07

Chunks (data partitions)

Figure 8: Speed up obtained with TProcessExecutor for different sizes of the data
and different number of chunks when benchmarking with the second dataset. The
measures have been taken with different number of processing units

10

Bibliography

[1] Alberto Rotondi and Paolo Montagna. Fast calculation of vavilov distribution.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interac-
tions with Materials and Atoms, 47(3):215-223, 1990.

[2] B Schorr. Programs for the landau and the vavilov distributions and the corre-

sponding random numbers. Comput. Phys. Commun., 7(CERN-DD-73-26):215-
24, 1973.

11

	Analysis of work partitioning granularity in the Executors

