
 1

Reading ATLAS xAODs with xAODdataSource
 First Results and Plans

Umesh Worlikar

Wuppertal, 21.06.2018

 2

 Introduction

About Me:
I am a Masters student of Computer Simulation in Sceince [CSiS] program
at Bergische University Wuppertal

Also working as a student assistant in Experimental Physics Dept. [Computing Team]
Project: PyJobTransforms Framework, a python interface layer around Athena framework

Current Work:
I am currently working on my thesis task, which initially began with an objective
to seek a generic solution for performance optimization of ATLAS analysis code.

This was further narrowed down to prototyping of xAODdataSource, a “Proof of Concept”, aimed
to bring performance benefits (and brevity) of ROOT’s TDataFrame to ATLAS analysis code.

Agenda:
1. Brief overview of xAODdataSource
2. Simple analysis use cases with TDataFrame and xAODdataSource
3. Initial performance test observations
4. Current status and plan

 3

 xAOD DataSource: Overview

TDataFrame offers:

Implicite Parallelism → Hide complexity of multi-threading from Analysis User
Expressive interfaces → Simplified User Analysis Code

However, for complex data formats
Parallel access to nested data elements is not trivial

To support arbitrary data formats,
TDataFrame relies on experiment specific data sources for task decomposition and data access.

For ATLAS xAODs, the xAODdataSource serves this purpose.
It’s an adapter, that connects TDataFrame with xAODs

xAODdataSource TDataFramexAOD
EventStore

Distributes Events into Tasks
Initializes data access pointers
for each event, when requested
by TDataFrame

Reads persistent xAOD
data from root files
into transient objects

Executes event loop
in parallel

 4

 xAOD Format: Overview

ATLAS xAOD format uses Event Data Model[1], a framework that maps physics objects into a scheme
of interfaces and classes. Event data is stored in a CollectionTree,
which contains Interface Containers. Each one associated with it’s Auxiliary Store.

Interface Container

AuxStore

AuxStoreDyn Run time data
derived properties/decorations

[1] General features of ATLAS Event Data Model

Provides consistent interface
for all storage types
Hides complexity of storage
technologies from user code

Compile time properties

Actual storage is handled by these under the hood

Standalone objects

Vector Containers

xAODdataSource uses
these to access data
elements through
xAOD EventStore

https://indico.cern.ch/event/403126/session/0/contribution/6/attachments/1154948/1659715/ATLAS_Event_Data_Model.pdf

 5

 xAODdataSource: Overview

xAODdataSource’s parallel-connection of TDataFrame with xAOD EventStore

IHandle<T>

Slot

T
E
v
e
n
t

IHandle<T>

IHandle<T>

IHandle<T>

TEventCursor

C
o
l
u
m
n
R
e
a
d
e
r
s

During Initialization:
xAODdataSource creates multiple TEventCursors
[one per slot]

Each TEventCursor holds:
 → One instance of xAOD::TEvent
 → A set of IHandles

Each Handle provides one ColumnReader, a pointer
through which TDataFrame gets data access

When “updated”, the Handle retrieves data from
EventStore, thus ColumnReader gets its pointer
initialized to expected memory location

During EventLoop:
1. TDataFrame concurrently calls SetEntry on all slots
2. Each TEventCursor calls Update on all its handles
3. Each handle retrieves data from EventStore
4. TDataFrame accesses data through ColumnReaders

3

1
2

4

Note: Handles are created on-demand
Number of Handles == Number of variables actually

 accessed by analysis code

 6

 Functional Tests

Functional Tests: Currently three basic use cases are considered

1. Read standalone xAOD objects, perform simple analysis tasks

2. Read xAOD vectors, perform simple analysis tasks

3. Read xAOD vectors, apply cut and filter some events

Note:
Although xAOD event store allows writing transient data into containers and make deep/shallow copies,
current scope is initially set to test read-only workflow. More complex scenarios can be considered as
future work.

Test Environment
Hardware : Intel i7 Quad-Core CPU @3.6 GHz, 8GB RAM

: Hyper Threading Disabled

OS : Ubuntu 16.04.LTS
ROOT : 6.13/02
AnalysisBase : 21.2.31
xAODdataSource : 0.1.00

Data set : data17_13TeV.00328263.physics_Main.deriv.DAOD_HIGG2D2.f836_m1824_p3213
: Set of 50 compressed DxAOD files
: Total size ~25GB

This validates:
Successful access to both basic
categories of xAOD containers

Successful interaction with TDataFrame
for common actions performed by
analysis code

 7

 Analysis Example: Standalone xAOD objects
Use case 1: Read standalone xAOD object, Perform simple analysis tasks. [min, max and histogram]

Create DataFrame
Define columns of
nested variables

Setup DataFrame’s
lazy actions

Access data
Triggers event loop

Event loop is
completely hidden
from user

Enable ImpliciteMT

From xAOD user’s perspective
typical analysis code would
look & feel like any other
data format used within ROOT

Simplified code
Relatively easy configuration

 8

 Analysis Example: Vector Containers
Use case 2: Read xAOD vector container, Create a histogram.

Mimic a user defined transform
This collects a vector from
an xAOD vector container

Enable impliciteMT
Create DataFrame

Use it with DataFrame’s
Define action to derive
another column

 9

 Analysis Example: Event Filter
Use case 3: Read xAOD vector container, Apply a cut and Filter some events

Mimic a user defined cut
Collects a slice of data from
an xAOD vector container

Enable impliciteMT
Create DataFrame

Define an event filter
with arbitrary predicate

Access filtered data

Use the cut function
to define a column

 10

 Performance Tests: Setup

Performance Tests:
Using the same test environment, several test runs were conducted using three compiled test
applications corresponding to three use cases described in last section

Data set : data17_13TeV.00328263.physics_Main.deriv.DAOD_HIGG2D2.f836_m1824_p3213
: Set of 50 compressed DxAOD files
: Total size ~25GB

Tests were executed in two different modes

1. WarmCache Mode:
A warm up iteration is executed as a dry-run, followed by
actual sample of 20 test executions. Mean wall time was
observed for each sample.

2. ColdCache Mode:
File system cache was cleared before each test execution.

For both modes, all three applications were retested with
data on spinning disk drive[HDD] and solid state drive[SSD].

The objective of these tests
was to observe scalability
relative to sequential
performance.

Cold cache mode was used to
probe any possible effect of
disk latency.

 11

 Test Observations: Warm Cache with HDD

Wall time w.r.t.
number of threads

Speedup relative to
sequential execution

Test Observations: Warm Cache, HDD

Speedup indicates possibility
of performance bottlenecks

All three test cases exhibit
similar scaling pattern

Potential overheads appear to
be independent type of
container or actions performed
on them

 12

Almost same results as that
of last observation on HDD.
Type of disk shows no effect
on speedup in this case.

 Test Observations: Warm Cache with SSD

Test Observations: Warm Cache, SSD

Wall time w.r.t.
number of threads

Speedup relative to
sequential execution

 13

 Test Observations: Cold Cache with HDD

Test Observations: Cold Cache, HDD

Wall time w.r.t.
number of threads

Speedup relative to
sequential execution

For t > 1
Performance degrades,
Speedup stalls

Wall time difference is
significantly large between
standalone and vector
containers

 14

 Test Observations: Cold Cache with SSD

Test Observations: Cold Cache, SSD

Wall time w.r.t.
number of threads

Speedup relative to
sequential execution

Almost same speedup pattern
as that of Warm Cache mode
observed on both SSD & HDD.

Only difference is
additional wall time,
a consistent offset, which
can be safely attributed to
Cold Cache miss.

Remark:
In Cold Cache mode, spinning disk does affect performance.
However, even with better hardware, the pattern of sub-optimal speedup is still persistent.
At least for use cases with low IO traffic,
The effect of disk latency on speedup may be safely ruled out.

 15

 Profiling Observations

Preliminary Profiling Observations: [Work in progress]

Concurrency timeline of Histo1D test case with 4 threads

Two possible issues

1. Significant spin time
 Workload imbalance

2. Low concurrency values throughout execution
Average number of simultaneously active threads < 2.3

 16

 Current Status

Currently identified problems:
Based on preliminary observations, two possible sources of bottlenecks are identified.

1. Workload Imbalance:
 XAODdataSource version [0.1.00] uses trivial uniform task distribution
 Number of Tasks == Number of Slots,
 Each Task has equal number of events.

 For effective task stealing, TDataFrame expects Number of Tasks >> Number of Slots
 With assistance from ROOT developers, I am currently working on solution for
 optimized workload distribution.

2. Low Concurrency:
 Initial profiling results, hint towards a mutex-lock in ROOT,
 However, at the moment it’s unclear whether it is apparent side effect of item 1 above.
 Worst, it could be a combination of load imbalance and lock contention.

Current Plan: Address item 1, then re-test and re-profile to reproduce item 2.

 17

 Conclusions

Conclusions:

1. We have a “Proof of Concept” for xAODdataSource, which works!

2. Lot of scope for performance improvement

3. Limited Analysis work-flow supported at the moment
 Community feedback would be of great help
 → Identification of more realistic use cases
 → Integration with existing Tools/Frameworks
 → Pre/post-EventLoop configurations/executions

→ Investigate effects of compression methods on performance

 18

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

