FELIX: commissioning the new detector interface for the ATLAS trigger and readout system

Roberto Ferrari
INFN Pavia

On behalf of the ATLAS TDAQ Collaboration

22nd Virtual IEEE Real Time Conference
12 October 2020
Overview

ATLAS TDAQ evolution for Run 3

FELIX* readout system

Performance & commissioning

Conclusions

*FELIX : Front-End LInk eXchange → (custom) PCIe cards hosted in COTS servers
ATLAS TDAQ in Run 2

~ 2 MB events, ~ 50 GB/s network bandwidth,
~ 1.5 GB/s recording throughput

Custom point-to-point links

Point-to-point S-LINKs*

VME (detector-specific)

Custom elx components

PCs (COTS)

*S-LINK: CERN Simple Link
ATLAS TDAQ in Run 2

• Custom HW/protocols for Front-End (FE) readout

• Data buffered in FE elx waiting for L1 trigger (max latency ~2.5 μs)

• Trigger and LHC clock sent to both FE elx and (detector specific) ReadOut Drivers (RODs)

• RODs send data to ReadOut System (ROS) which buffers them for High-Level Trigger (HLT) requests

• HLT finalises event selection in two steps

Readout system:
~1 k ROD boards
~150 ROS servers
Upgrade for Run 3

LHC Phase-I Upgrade → ATLAS trigger & detector upgrade

1) new muon detectors in both forward and transition regions
 → additional readout channels more than full present muon spectrometer

2) new trigger elx in calorimeter system
 → upgraded readout architecture
Upgrade for Run 3

Same requirements as Run 2

GBT* or FULL mode links

25-100 Gb/s Ethernet

*GBT: GigaBit Transceiver with Versatile Link
Upgrade for Run 3

Same requirements as Run 2 but reduced custom components

- GBT* or FULL mode links
- 25-100 Gb/s Ethernet
- PCIe Gen3 (TDAQ specific)
- VME (detector-specific)

*GBT: GigaBit Transceiver with Versatile Link

Custom elx component including FELIX cards

PCs (COTS)
New Readout Architecture

ROD + ROS legacy system

FELIX + SW ROD

DCS + TTC via FELIX
New Readout Architecture

FELIX :
- data/signal/message routing from/to FE elx
- detector state agnostic
- pushes detector fragments to SW ROD servers

SW ROD :
- data collecting and processing
- supporting configuration, calibration, control, and monitoring
- interface to HLT

Run 3 FELIX system:
- ~100 FLX boards / 60 servers
- ~30 SW ROD servers
FELIX system

FLX-712 : ATLAS production board for Run 3
FELIX functionality

• Router between FE serial links and commercial network

• Data transport decoupled from data processing

• Get and distribute TTC (Timing, Trigger and Control) signals

• GBT-mode configurable e-links*

• Detector independent

*e-link: data mux/demux protocol (more physical electrical links packed over one single GBT link)
FELIX block diagram

PC hosting up to two PCIe FELIX cards + network card
FLX-712 card features

- Kintex UltraScale FPGA
- 8 MiniPODs
- 16-lane PCIe Gen3
- Flash and μ-controller for FW update
- On-board jitter cleaner
- Timing mezzanine to interface TTC system

- 24 x 4.8 Gb/s links @ PCIe limit
- 12 x 9.6 Gb/s links @ PCIe limit
- 48 links as TTC dispatcher
Run 3 parameters for FELIX readout (worst cases)

<table>
<thead>
<tr>
<th>Name</th>
<th><chunksize></th>
<th>Rate per channel</th>
<th>Channels per FELIX</th>
<th>Chunkrate per FELIX</th>
<th>Datarate per FELIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT Mode</td>
<td>40</td>
<td>100</td>
<td>384</td>
<td>38.4</td>
<td>12</td>
</tr>
<tr>
<td>FULL Mode</td>
<td>4800</td>
<td>100</td>
<td>12</td>
<td>1.2</td>
<td>46</td>
</tr>
</tbody>
</table>

GBT Mode → FPGA-resource limited

FULL Mode → PCIe-bandwidth limited
Firmware flavours

<table>
<thead>
<tr>
<th>FLX-712 # chans</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GBT dynamic</td>
<td>4+4</td>
</tr>
<tr>
<td></td>
<td>- all combinations of e-links (2,4,8) and modes (8b/10b, HDLC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GBT semi-static</td>
<td>12+12</td>
</tr>
<tr>
<td></td>
<td>- static & configurable links</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FULL</td>
<td>12+12</td>
</tr>
<tr>
<td></td>
<td>- 6+6 channel matches max PCIe bw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 12+12 channel @ lower bw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LTDB* mode</td>
<td>24+24</td>
</tr>
<tr>
<td></td>
<td>- only clock distribution, trigger, slow control and monitor</td>
<td>(LTDB)</td>
</tr>
</tbody>
</table>

LTDB: Liquid Argon Digitizer Board
Software

low level sw → basic configuration/monitoring (e-link conf., felix monitoring)

higher level sw → data rate and channel monitoring

felix-star

• single-threaded event loop, any operation is one event

• networking based on new communication library: NetIO-next

• data transfer uses RDMA i.e. kernel not involved

• higher performance
Performance, integration and commissioning

GBT mode

- stable multi-hour operation (longer than average LHC fill)
- reliable parallel communication with test board featuring DCS components

~ 12.5 Gbps network throughput
Performance, integration and commissioning

GBT mode

• BUSY signal propagation correctly handled

• Emulator rump-up demonstrated rates 50% above expectation (150 kHz)
Performance, integration and commissioning

FULL mode

• stable multi-hour operation (longer than average LHC fill)
Performance, integration and commissioning

Stress test

• backpressure shows up at ~ 200 kHz
• achieved ~ 300 kHz
User support & integration

- Active user support → crucial:
 user issues more and more difficult to reproduce in TDAQ testbed
- Further push toward integration
Summary & Outlook

ATLAS TDAQ evolution for Run 3:
FELIX + SW ROD replace (part of) ROD + ROS system
→ more flexibility, reduced custom design
→ architecture for Run 4 and beyond

HW commissioning and deployment ongoing
(~/ 200 FELIX cards already delivered)

SW development in progress

Performance tests consistently exceed Run 3 requirements

User feedback more and more relevant

Please, see also talk by Serguei Kolos on SW ROD
Thanks!
Extras
ATLAS Readout in Run 3

New Muon detectors: New Small Wheels, small “BIS7/8” RPCs
New L1 Calo trigger system
→ exploit commodity and/or common hw as soon as possible

FELIX
• Connects directly to detector FEE
• Receives and routes data from detector directly to clients
• Routes L1 trigger, clock and control signals to detector FEE
• Able to interface both with GBT protocol and directly to remote FPGA via high bandwidth ‘FULL mode’ protocol

SW ROD
• Software process running on servers connected to FELIX via high bandwidth network
• Common platform for data aggregation and processing - enables detectors to insert their own processing into data path
• Previously performed in ROD hardware
• Buffers and - on request - serves data to HLT
• Interface indistinguishable from legacy readout (ROS)

• Control and monitoring applications now distributed among servers connected to data network
Upgrade for HL-LHC (Phase-II)

~ 5 MB events, ~ 5 TB/s network bandwidth, ~ 50 GB/s recording throughput

GBT, LpGBT* or FULL mode links

COTS network technology

Custom elx component including FELIX cards

*LpGBT: Low-power GBT
FELIX firmware design

Central router block handles e-links
 e-link: data mux/demux protocol designed for ATLAS

Fixed latency transmission to FE

DMA for PCIe throughput to host memory (2 × 64 Gbps)

Optical Link Transceiver using GBT protocol
 Two link modes:
 GBT-frame mode, Full mode

Decoding TTC information and LHC clock recovering

Data routing using E-Link

Legend:
 Main data path
 Slow control and monitor

PCIe DMA engine
Performance & integration (Phase-II)

FELIX testbed:

- 32×260 Mb/s links
- 1 MHz random L1A for NSW Phase II
- stable transfer rate with felix-star, no errors
- actual test to be performed with NSW vertical slice
Integration in FELIX testbed

Integration with new trigger system (ALTI)
- ALTI installed and update
- learning how to operate it

Integration with swROD
- several test runs with felix sw emulator
- rerunning test with new sw

Integration with OPC-UA
- DCS sw depends on NetIO library
- preparing joint set-up as common reference frame
Software transition

felixcore
- multiple-threaded, pipeline architecture
- networking based on “NetIO” library
- functional, minimal performance margin
- supported until all users migrated to felix-star

felix-star
- single-threaded event loop, any operation is one event
- networking based on “NetIO-next” library
- uses RDMA i.e. kernel not involved in data transfer
- higher performance
- transition in progress ...
NetIO-next performance tests

GBT test configuration:

pc-tbed-felix-06

swrod_netio_next_publisher
- 192..1152 e-links
- 1..12 publishing threads
- 40 bytes packets

netio-next

over

100 Gbps Ethernet

pc-tbed-swrod-01

swrod_test application
- 1..6 ROBs with 192 e-links per ROB
- 1..2 reading/assembling threads per ROB
- 6 HLT processing threads
- No custom processing

pc-tbed-net-03

swrod_hlt_requester
- 50% EB requests
- Request rate is dynamically adjusted to the reply rate

asyncmsg

over

40 Gbps Ethernet
NetIO-next performance tests

GBT test results:

No HLT

50% EB requests
NetIO-next performance tests

FULL-mode test configuration:

- **pc-tbed-felix-06**
 - swrod_netio_next_publisher
 - 24 e-links
 - 6 publishing threads
 - 5000 bytes packets

- **pc-tbed-swrod-01**
 - swrod_test application
 - 1..24 ROBs with 24..1 e-links per ROB
 - 6 total reading/assembling threads
 - 12 HLT processing threads
 - No custom processing

- **pc-tbed-net-03**
 - swrod_hlt_requester
 - 50% EB requests
 - Request rate is dynamically adjusted to the reply rate

- **netio-next**
 - over 100 Gbps Ethernet

- **asyncmsg**
 - over 40 Gbps Ethernet
NetIO-next performance tests

FULL-mode test results:

- investigating scaling problem