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Context on Neutron-gamma discrimination

• Architecture of Traditional FPGA-based DAQ systems
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Context on Neutron-gamma discrimination

• Extensively researched topic.

• Traditionally integration over different intervals.

• Latest techniques involve Machine learning 

• Fusion datasets cannot be easily split (Complex problem, 

specially for low Energy)
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Classification of Gama-Neutron suing SVM

Reproduced from [Gelfusa]. JET Pulse no. 90653

M. Gelfusa et al., “Advanced pulse shape discrimination via machine learning for applications in thermonuclear fusion,” Nuclear Instruments and Methods 
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, doi: 10.1016/j.nima.2020.164198

C. Fu, A. et al, “Artificial neural network algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintillators,” Annals of 
Nuclear Energy, doi: 10.1016/j.anucene.2018.05.054

Multi Layer perceptron developed by [C. FU]



Context on Neutron-gamma discrimination

• Machine learning methods:

• Signal and feature MLP

• Support Vector machines

• CNN

• Each with different advantages.

• Implemented a model using the successful CNN (very popular in image processing).

• Very good results for pattern recognition.

• Requires more than just 2 classes for more real signal classification.
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Reproduced from [A. Vacheret]

A. Vacheret, R. Taylor, D. Saunders, S. Kleinegesse, and J. Griffiths, “Pulse Shape Discrimination and Exploration of Scintillation Signals Using 
Convolutional Neural Networks,” Machine Learning: Science and Technology, 2020, Accessed: Sep. 30, 2020. [Online]. Available



Context on Neutron-gamma discrimination

• What can we change by a NN ?

• What is the architecture of this NN ?

• What are the advantages ?

• What are the drawbacks ?

Miguel Astrain Etxezarreta | IEEE RT2020 | Virtual | 12/10/2020 | Page 6

FPGA

Fabric for classical HW development

→Classification problem
→Many choices
→Potentially better results

AI Processor
Deep Learning Unit

→Black box
→Intensive computing

Detector ADC



Objective

• Traditional FPGA or SoC:  Hard to develop. HDL

• New trends in FPGA technologies: promoting the use of High-level 
languages (HLS) or OpenCL

• New Heterogeneous Hardware platform: FPGA + ARM Cores + AI cores, 
ACAPs. Tensor cores, with ADCs

• Much more raw computing power than traditional approach.

• Industry interest in AI.
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Objective
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ARRIA 10 FPGA

Classical PSD

PCIe
NN

Detector ADC

• Evaluate the implementation of a prototype using MTCA technology and ITER CODAC Core 
environment (RHEL)

• Use of commercial AMC module and FMC ADC (NAT and Analog Devices)

• Integration with EPICS

• Hardware development using OpenCL C like programming (custom CNN Neural network).

• Board Support Package developed using IntelFPGA methodology

AMC

M. Astrain et al, “A methodology to standardize the development of FPGA-
based high-performance DAQ and processing systems using OpenCL,” Fusion 
Engineering and Design, doi: 10.1016/j.fusengdes.2020.111561



Convolutional Neural network

• Using 1D CNN

• JET Pulse no. 90653, re-sampled to 250MS/s

• Generate Pile-ups from pulses

• 33% split data train-verification-test

• Modeled for float 32 and 16 (Quantization did 

not provide useful results yet)

• Created in a python environment using:

• Anaconda, python 3.8,tensoflow(keras) and 

tensorflow-lite
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C. Fu, A. et al, “Artificial neural network algorithms for pulse shape discrimination and 
recovery of piled-up pulses in organic scintillators,” Annals of Nuclear Energy, doi: 
10.1016/j.anucene.2018.05.054



1D Convolutional Neural Network

• Solution:

• 7 Layers with 2532 weights

• Accuracy of 99.5% in TensorFlow

• Performance of 40 us in a desktop computer

• Advantages using CNN

• More robust than MLP when there is a signal displacement

• Automatic learning of features. The filters focus on different 
patterns, similar to the classic PSD techniques

• Disadvantage

• Second CNN layer requires most part of computational 
resources

• Data re-ordering required for calculations (implies accessing 
to memory resources in the FPGA. This slows the solution)
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Netron Representation



FPGA Implementation (ARRIA 10)

• Complete NN implementation using OpenCL 

(float32)

• Board Support Package for OpenCL 17.1

• Utilizing hardened floating-point variable-

precision digital signal processing (DSP) blocks.

• 1D CNN can fit the inference parameters inside 

the FPGA RAM blocks (avoiding use of external 

DRAM)

• External access to DRAM is minimized (global 

memory)

• Data streams from FMC I/O board
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FPGA Implementation

• Processing elements in the FPGA take data streams

• ML Convolution operations:

• Calculate the dot product and accumulate (weights)

• Add offset (bias)

• Weights and data between layers is streamed to 

M20K blocks.

• Activations of (tanh) neuron are costly in computing

• But ReLu operations where unsuccessful in training

• Replication of the Processing Elements enables 

parallelization
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Results

• 2532 weights CNN 32bit float.

• 150MHz kernel clock frequency.

• 40% area usage. 

• Low DSP usage (higher parallelization potential!).

• 250us processing time, 4k event/s working with internal 
RAM blocks.

• Maximum error in the classification with the test signals 
of 0.8% (gamma), 0.9% (neutron), 2.5% (close pileup), 
and 1.1% for each class.

• Moving to an Intel-FPGA Stratix device could achieve 
around 25k events/s (this is under development!).
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Conclusion

• Modern state-of-the-art Machine Learning methods where applied to the n/g 
discrimination problem using JET Pulse no. 90653.

• 1DCNNs are capable of achieving very high accuracies with very little knowledge 
about the signals.

• 1D implementations are simple enough to fit in the FPGA using OpenCL. The 
whole NN can be executed locally. 

• Using OpenCL the NN can be ported to higher-performance solutions. 

• Higher performance FPGAs might be able to achieve a real-time classification 
system with around 25kevent/s

Miguel Astrain Etxezarreta | IEEE RT2020 | Virtual | 12/10/2020 | Page 14



Acknowledgement

Miguel Astrain Etxezarreta | IEEE RT2020 | Virtual | 12/10/2020 | Page 15

This work has been funded by the. Spanish Ministry of Economy and Competitiveness, 

Project Nº ENE2015-64914-C3-3-R; the Spanish Education Ministry, Mobility grant 

number PRX19/00449 and Comunidad de Madrid grant number PEJD-2018-PRE/TIC-

857

This work has been carried out within the frame-work of the EUROfusion Consortium and 

has received funding from the Euratom Research and Training Programme 2014–2018 
under grant agreement No 633053.



Thank you!

m.astrain@upm.es

Miguel Astrain Etxezarreta | IEEE RT2020 | Virtual | 12/10/2020 | Page 16


