Peak-finding for Longitudinal Beam Halo Readout System

N. M. Truong, on behalf of the Mu2e Collaboration
22nd IEEE Real Time Conference

Mu2e Experiment

- Mu2e is an experiment at Fermilab that will search for the conversion of a muon to an electron that has been captured by an aluminum nucleus, with a 90% CL exclusion of 8×10^{-17}.
- The Mu2e Experiment requires the ratio of out-of-time protons to beam pulse protons to be less than 10^{-10}.

Prototype & Readout System

- One arm of the PTPM (4 Cherenkov detectors) has been installed in the Recycler Ring.
- The PMT signal is read out by using an FMC228 card, an AMC502 is used to collect data from FMC228 card.
- The data will be sent to the data acquisition system via a gigabit ethernet or PCIe interface.

Firmware Requirements:
- Monitor the beam data in long time (~ms).
- Distinguish two or more particles hitting detector close in time.
- Detect the particle hitting detector.
- Send out long time peak data and short raw waveform length data.
- The firmware can send out data from multiple FMC228 cards.
- The firmware sends out peak finding data and raw waveform.
- The firmware design:
 - The peak-finding algorithm is implemented as a peak-finding module on a Xilinx Kintex-7 FPGA on an AMC502 card.
 - The firmware sends out peak-finding data and raw waveform.
 - The firmware can send out data from multiple FMC228 cards.

Offline Analysis

- Pulse pile-up:
 - On one pulse, maybe there are two or more peaks, such as two particles hitting detector close in time.
 - Fake background:
 - Random particles hit the detector.
 - Calculate real peak height to remove pulse pile-up:
 - Use the raw waveform to fit the peak shape pulse.
 - Use the fitting function to calculate the tail of previous peak and the real peak height signal of current peak.
 - Take coincidence of four PMT signals in short time windows to reduce fake background.

Example of average waveform and fitting function

Precision Time Profile Monitor (PTPM) & Motivation

- 8 GeV proton beam from the Fermilab Booster Synchrotron is injected into the Recycler Ring.
- Proton beam is re-bunched to 8 bunches 2.5 MHz.
- 8 bunches are extracted to the Delivery Ring.
- From the Delivery Ring, the beam is resonantly extracted to Mu2e experiment via M4 beam line.
- PTPM was developed to study the longitudinal beam halo for the Mu2e experiment.
- PTPM has excellent time resolution compared to the nominal bunch length and a low background fake rate.
- PTPM need to monitor the beam data in long time (~ms).

PTPM has excellent time
duration compared to the nominal bunch length and low
background fake rate.

Peak-finding Algorithm & Firmware Design

- Peak-finding algorithm:
 - Detect the peak in the pulse above the threshold.
 - Distinguish more than one peak in pulse.
 - Send out peak time, peak height and peak area.

Preliminary Results and Future Plan

- The system is under test at the Fermilab Recycler Ring.
- The data is collected when the beam is sent to the Muon campus.
- The preliminary result confirm the system can monitor the beam in 100 ms windows, the right figure shows an example of in-time proton pulses separated by the 11.2 μs Main Injector period, as well as out-of-time protons.
- In future, the full monitor will be installed with 16 channels.
- Finally, the system will be moved to the Delivery Ring beam line for the Mu2e Experiment and it will provide fast feedback on the beam quality being delivered.

Out-of-time proton In-time proton

Example of different time window reading
Backup
An 8 GeV proton beam bunch from the Fermilab Booster is injected into the Recycler Ring.

A 2.5 MHz RF system re-bunches it to 8 bunches 2.5 MHz.

These bunches are transferred one at a time to the Delivery Ring.

From the Delivery ring, the beam is resonantly extracted.

The 1.7 μs period of the Delivery Ring gives the beam the required Mu2e time structure.

The requirement for out-of-time beam for Mu2e will be achieved with a system of resonant dipoles and collimators; they will be configured such that only in-time beam is transmitted to the target.

In order to achieve the requirements, the bunches formed in the Recycler Ring have out-of-time beam at the 10^{-5} fractional level or less.

The PTPM is to measure out-of-time beam in the Recycler Ring to verify that it matches models.
After 2nd proton batch injected into Recycler Ring, the proton beam is re-bunched in 90 ms. The resulting 8 bunches are slow extracted to Mu2e over an interval of 380 ms. Each spill is 43 ms long with a 5 ms reset between spills. After the 8th spill the Recycler is used for NuMI/NOvA slip-stacking.
Firmware with Peak-finding

- **Peak-finding algorithm:**
 + Detect the peak in the signal above the threshold.
 + Distinguish more than one peak in pulse.
 + Send out peak time, peak height and peak area.

Offline analysis to reduce fake background

+ **Average waveform and fitting function**

\[
\gamma / \text{ndf} = 1.303 \times 10^5 / 268 \\
\text{Constant} = -6724 \pm 37.44 \\
\text{MPV} = 113.8 \pm 0.06714 \\
\text{Sigma} = 6.054 \pm 0.04446
\]
The preliminary result confirm the system can monitor the beam in 100 ms windows, figures here show an example of in-time proton pulses separated by the 11.2 µs Main Injector period, as well as out-of-time protons.