

Qi-Dong ZHOU (IAR/KMI, Nagoya Univ.)

S. Yamada, P. Robbe, D. Charlet, R. Itoh, M. Nakao,

S.Y. Suzuki, T. Kunigo, E. Jules, E. Plaige, M. Taurigna,

H. Purwar, D. Biswas, Y.-T. Lai, O. Hartbrich, M. Bessner

22nd Virtual IEEE Real Time Conference 12-23 Oct. 2020

Contents

- Introduction of Belle II DAQ and DAQ readout system
- Motivation of upgrading Belle II readout system
- PCle40 module
- Firmware and software development
- Performance of new readout system
- Schedule and plan of DAQ upgrade

Luminosity frontier: SuperKEKB

 $\mathcal{L} = 6.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

Nano beam scheme

Belle II

Beam squeeze: KEKB / 20

e- 7 GeV

Belle II detector

Superconducting/
permanent
final focusing quads
near IP (QCS)

Position dumping ling low emittance position

Position source target

Low emittance electron gun

Belle II detector

Vertex detector (VXD)

- Inner 2 layers: pixel detector (PXD)
 - 2nd layer not fully installed
- Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)

 He (50%), C₂H₆ (50%), small cells, fast electrics

Particle ID detector

- Barrel: Time-Of-Propagation counters (TOP)
- Endcap: Aerogel RICH (ARICH)

ElectroMagnetic Calorimeter (ECL)

CsI(TI) + waveform sampling

K_L/μ detector (KLM)

- Outer barrel: Resistive Plate Counter (RPC)
- Endcap/inner barrel: Sci.

Belle II DAQ system

- Unified common readout system for sub-detectors (except for PXD)
- Unified timing and trigger distribution system
- A pipeline readout
- To handle 30 kHz level 1 trigger with 6 1% dead time under raw event size of 1 MB

Readout system

Belle2link:

Unified high speed optical link (2.54Gbps) connected Front-End Electronics and DAQ readout board (COPPER-HSLB), data transmission based on Rocket I/O.

Functionalities of readout system

- Belle2link,
- TTD interface,
- slow control,

- pre event-building, GbE
- **Data-formatting**
- Data-check

FTSW module for TTD

Upgrade of Belle II readout system

Upgrade for new readout system

- Upgrade of readout system will keep the modification as small as possible, for the system connected.
- No major modification required for hardware and firmware of the subdetectors' systems.
- Software for slow control and data readout need some upgrades

Firmware development

- Low Level Interface was designed for user's control and initialization proposes, enables a generic management of functions required by the PCIe40 board
- Belle2link protocol was basically kept as same functionality, but redesigned
- Event building and formatting was newly added based on the FPGA logic, it was done by COPPER on board CPU
- Slow control logic was kept, but moved most of the parts controlled by software
- TTD kept using b2tt protocol, new design to handle 48 links
- PCIe based DMA architecture was designed based on the Qsys with an external DMA descriptor controller apart from DMA engine.

Data processing

- Event-building
 - Reduction of header and trailer info of each link
 - Data check
 - CRC calculation, mismatch headers among different links
 - Add error-bit flag to the builded event
- Pulse trigger rate: 470 kHz (times 8 kBytes)
 - Data transmission rate: 39 Gbits/s
 - 10 % of event detect back-pressure.
- Pulse trigger rate: 260 kHz, 21 Gbits/s, no event lost.

Theoretical maximum data rate is 50 Gb/s can eventually be increased to 100 Gb/s

Test bench

Slow control performance

- Belle2link was kept as most the same as COPPER-HSLB system
- 3 SLC access methods for PCle40 were implemented and tested
 - A7D8 and A16D32 kept the same features as HSLB
 - Streaming file method separated based on packet size;
 KLM (6 words / pocket), ARICH (100 words / pocket)
- A16D32 access:
 - 83 us / access

<->1 ms / access for HSLB

- Streaming file:
 - 360 KBps (KLM)
 - 1-2 sec downloading ARICH firmware
- <-> 350 KBps for HSLB
- <-> 1-2 sec for HSLB
- Parallel access of slow control + data acquisition with multiple links is working well
 as shown in bottom plot
 - It takes the same time for the access w/ and w/o parallel access
- SLC configuration for FEEs of TOP (64 links) and KLM (32 links) has been tested and working fine.

Detector	A7D8	A16D32	byte stream
SVD	0		
CDC		0	
TOP		0	
ARICH		0	∘ (~3MB)
ECL	0	0	
KLM		0	0

Upgrade of slow control system

- pcie40controld: one node pre board, monitoring PCIE40 board status, manage pcie40linkd
- pcie40linkd: one node pre link, monitoring link status, initialize and monitoring corresponding FEE.

Monitoring system

event=0 total=0kB

(02)

(02) (02) b2l=DOWN (rx=DOWN tx=UP rxsta=NOT READY txsta=NOT READY mask=UNMASK)

rxdata=0000 rxlinkdown=0 rxcrcerr=0 feecrcerr=0

b2link error 49(i) 47(-) D00 Dc7 D00 D00 D00 D2f

Preparation for replacement

- 31 boards has been produced, then tested at CERN, they already arrived at KEK in Sep. 2020
- 3 boards were installed on 3 servers for replacement of TOP and KLM
- 10 GbE NIC installed on ROPC,
 40 GbE network switch <->
 HLT server room installed

Full replacement timescale

Current COPPER system will be on standby for a while after the installation, In case of a serious trouble, we can rollback to the COPPER system quickly

Summary

- Belle II DAQ system was designed to handle 30 kHz L1 triggers within 1% dead time.
- A COPPER based readout system has been the bottleneck to maintain and improve the performance of Belle II DAQ system
- PCIe40 module based upgrade proposal has been adopted for the upgrade of Belle II DAQ readout system
- Upgrade will keep the main features of current readout system to reduce the modification of sub-detectors as much as possible.
- Firmware and software development are almost done
- Full slow control functionalities has been tested with TOP and KLM onsite detector
- A stress test of data readout system at test bench confirmed that no event lost with 260 kHz trigger rate and 21 Gb/s
- Replacement is scheduled in this winter for TOP and KLM, the others during summer shutdown 2021.