Accelerated Deep Reinforcement Learning for Fast Feedback of Synchrotron Beam Dynamics

Weijia Wang, Michele Caselle, Tobias Boltz, Edmund Blomley, Miram Brosi, Timo Dritschler, Andreas Kopmann, Andrea Santamaría García, Erik Bründermann, Marc Weber, Anke-Susanne Müller, Yangwang Fang
Outline

- Motivations
- Requirements
- Hardware development
 - Front-end electronics for fast THz detectors
 - Fast feedback hardware implementation
- Real-time data processing by AI
 - Introduction of Reinforcement Learning
 - Real-time implementation
- Preliminary results
- Conclusions and what’s next
Accelerator Facilities at KIT

Karlsruhe Research Accelerator (KARA)

Electron storage ring and Synchrotron light source

- Circumference: 110.4 meters
- Energy range: 0.5 - 2.5 GeV
- Platform for development and testing of new beam and acceleration technologies
- Pooling research of new accelerator concepts
- Development of new detectors
Karlsruhe Research Accelerator (KARA)

- KARA: one of the 1st to offer short bunch
- (low-\(\alpha_c\) optics) bunch length down to few ps
- Enable to study the microbunching instability
- Custom detectors developed for a real-time resolved phase space tomography

Coherent Synchrotron Radiation (CSR)

Generation of CSR

- When the wavelength of the emitted radiation is considerably shorter than the bunch length ($\lambda \ll \sigma_z$), the synchrotron radiation is emitted coherently.

- CSR = high radiation power
 - interesting for users!
 - operation in short bunch mode (low α_c optics)

- Short bunch mode \rightarrow microstructures appear, making the CSR power fluctuate.

- Goal: CSR stabilization with high average (power) and low variance.

KARA and Micro-bunching instability

- High intensity of CSR power
- Complex dynamics of the bunch makes the control challenging
- Real-time control with latency down to few hundred of µs

GOAL: Control the Micro-bunching instability by Machine Learning
KAPTURE - Measurement of bunch properties

Karlsruhe Pulse Taking Ultra-fast Readout Electronics (KAPTURE)

KAPTURE is an ultra-wideband front-end electronics for ultra-fast Terahertz detectors

- 8 Sampled points by KAPTURE
- Sampling time of 3 ps, local sampling frequency > 300 GS/s
- Up to 1 GHz pulse repetition rate
- Pulse amplitude (mV) and arrival time (ps) accuracy
- Real-time pulse sampling for long observation time
- Real-time FFT and measurement of CSR fluctuation by GPU
Hardware Design of Feedback Loop

THz radiation

KARA
RF cavity

THz detector

KAPTURE2

FPGA DAQ

KAPTURE

The action is processed and, by the Bunch-By-Bunch feedback system, sent to the kicker cavity

FPGA DAQ:
- Sampling the CSR
- Extraction of the frequency of the instability
- Real-time process of CSR signal
- RL algorithm running on the FPGA receives the measurements of CSR and decides the action (RF modulation)

BBB (Bunch-By-Bunch)
Model: iGp12-720F from Dimtel

THz detector

FPGA DAQ

KAPTURE2

BBB iGp

W. Wang
Simulation of Feedback Control

Mitigation via Dynamic RF Amplitude Modulation

THz CSR acquired by KAPTURE

Example of RF cavity control (real-time)

→ To be implemented by AI
Time Requirement

Timing Contributions

+ 1. THz detector/s
+ 2. Front-End Electronics
+ 3. Measurement of CSR signal (amplitude, time, frequency)
+ 4. Feature extraction from CSR
+ 5. Data processing based on AI processing
+ 6. Fast feedback to BBB

∑ t_i < Hundreds of µs
The Reinforcement Learning Approach

- Goal-directed learning from interaction with an environment
- No pre-existing data set, trial-and-error learning → reinforce “good” behavior
- Markov Decision Process (MDP)

Goal-directed learning from interaction with an environment.

No pre-existing data set, trial-and-error learning -> reinforce “good” behavior.

Markov Decision Process (MDP)

Movement of the opponent (Env)
Defining Reinforcement Learning

Observable (state definition): CSR signal
We can consistently and reliably measure the THz emission thanks to KAPTURE II. Provides information about the micro-bunching dynamics

Theoretical observable (state definition): charge distribution
Ideal, we use it in simulations.
Vlasov-Fokker-Planck solver Inovesa

Reward
Based on average and STD

Action
Modulation of the RF amplitude

The action is processed and, by the Bunch-By-Bunch feedback system, sent to the kicker cavity
Hardware Deployment of RL Agent

- **State**: Event rate > 500 M/s
- **Policy**: Instruct / improve
- **Reward**: RL Algorithm
- **Inference**: Training
- **Action**: Feedback to the RF cavity

- **Controlled system (Env.)**
 - (Beam Dynamics)
- **THz CSR beam**: ZYNQ

- **Hardware Deployment of RL Agent**
 - **ZYNQ**
FPGA - AI platform: HighFlex 2

- Processor System (ARM): User Applications
- Programmable Logic (FPGA): fast and low latency application

Front-End:
- KAPTURE
- KALYPSO

- Compatible with standard FMC

PCI EXPRESS
- PCIe Gen 4 (x8 or 16 lanes)
- Data rate up to 240 Gbps

- 12 lanes @ 28 Gbps
- Data throughput (full-diplex) up to 336 Gbps

- Two SSD raid Local data storage
HighFlex 2 FPGA: ZYNQ Ultrascale plus

- System Logic Cell: 653 K
- Flip-Flops: 597 K
- LUT: 298 K
- Distributed RAM: 9.1 Mb
- Block RAM: 21.1 Mb
- UltraRAM: 22.5 Mb
- DSP Slices: 2928
- PL-DDR4: 2 GB

AMBA AXI4 interfaces for primary data communication

- Quad-core Arm Cortex-A53
- NEON & Single/Double Precision Floating
- PS-DDR4: 4 GB
Hardware Deployment of RL Agent

- **Controlled system (Env.)**: THz CSR beam (Beam Dynamics)
- **Inference**
 - **Policy**
- **Reward State**
- **Training**
 - **RL Algorithm**
- **Action**
 - Feedback to the RF cavity
- **Hardware Deployment of RL Agent**
 - **Policy**
 - **Reward**
 - **State**
 - **Instruct**
 - **PL (FPGA)**
 - **PS (ARM)**
- **THz CSR beam**

Andrea Santamaría García - Artificial intelligence activities at KIT for accelerators

22th IEEE - Real Time Conference, 12-23 October 2020.

W. Wang
Proof of Concept

- **Simulated CSR**
 - Inovesa (Beam Dynamics Simulation)

- **RL Algorithm**
 - Policy
 - Inference
 - Training
 - instruct

- **Inference**
 - PL (FPGA)
 - PS (ARM)

- **Simulated CSR**
Comparison between FPGA and GPU (Keras-RL)

Simulation results by Inovesa

![Graph](image)

- **Episode**: agent behave badly and interaction stops
- The hardware achieve the similar learning curve compared to Keras-RL

RL on FPGA

RL on GPU

Received Rewards

- **Training time (episode)**
 - Reward 3000

Simulation results by Inovesa
RL training performance

Training for one-batch of data

ZYNQ: 1000us
CPU: 2000us
GPU: 5000us

50 times
RL inference performance

Inference on FPGA shows a fixed latency of 4228 clock cycles at 250 MHz clock frequency = 16.9 µs
Conclusion & what‘s next

- Microbunching instability study at KARA
- Fast detector and beam diagnostics fully developed
- Hardware implementation of the feedback loop control → tested

- Developed a framework for the implementation of an RL algorithm on ZYNQ-FPGA
- Preliminary results show a high inference performance of about 17 µs
- Training performance in the order of > 1 ms, to be improved

What’s next

- Test the feedback system including the RL at KARA
- Further investigation of potential support of different RL algorithms
- Further investigation of different FPGA and strategies to reduce the training time
Thank you for your attention
Applying Reinforcement Learning to our case

Observable (state definition): CSR signal
We can consistently and reliably measure the THz emission thanks to KAPTURE II. Provides information about the micro-bunching dynamics.

Theoretical observable (state definition): charge distribution
Ideal, we use it in simulations.

Action
Modulation of the RF amplitude

Reward
\[R = \mu_{CSR} - w \sigma_{CSR} \] where \(w \) is a weight

Difficult to integrate in our feedback loop?

Could we improve the reward definition?
Hardware Requirement of Reinforcement Learning

1. agent moves
2. env changes
3. agent learns

State S_1

1. agent moves
2. env changes
3. agent learns

State S_2

1. agent moves
2. env changes
3. agent learns

State S_3

Inference

Training

Online Training

Each step involves training and inference!

+ 3. Collect and interpret the CSR signal
+ 4. Transfer the control to BBB
+ 5. Generate the control signal
+ 6. Collecting training data
+ 7. Backward propagation
+ 8. Updating networks

\[\sum_{i} t_i < \text{Hundred of } \mu s \]
Deep Deterministic Policy Gradient

Actor Network (Policy)

- Actor is component that learns policies.
- Actor follows the instruction coming from the Critic Network, in practice, it update towards a direction that maximum the q value.

Critic Network (Value)

- Critic learns the state-value function that used for “criticize” the actor’s policy.
- Critic update through the TD errors, in practice, it is updated by the reward signal collected from the environment.
Hardware Implementation of DDPG

Actor Network (Policy)
Inference
\[\mu(s_t \mid \theta^\mu) = \text{action} \]

- Actor is used for generate action signal
- This needs a relatively easy calculation and fixed-point value can fulfill the requirement.

Actor Network (Policy)
Training
- Actor network training use the information from critic network for a backpropagation.
- This needs a relatively complex calculation and floating point value.