Data Acquisition System for the COMPASS++/AMBER Experiment

Dima Levit for the COMPASS DAQ group
Technische Universität München
Physikdepartment E18

22nd IEEE Real Time Conference
Overview

Motivation

Free-running DAQ Architecture

Implementation Details

Performance Measurements

Summary and Outlook
Measurements at the COMPASS++/AMBER

- Drell-Yan process
- Antiproton production cross section
- Proton radium measurement with muons
Measurements at the COMPASS++/AMBER

- Measurements
 - Drell-Yan process
 - Antiproton production cross section
 - Proton radium measurement with muons
- Low-angle scattering at active hydrogen target
Measurements at the COMPASS++/AMBER

- Measurements
 - Drell-Yan process
 - Antiproton production cross section
 - Proton radium measurement with muons
- Low-angle scattering at active hydrogen target
- Long read-out time of the TPC
 - Long trigger decision time
 ⇒ free-running DAQ needed
Current COMPASS Data Acquisition Architecture

- Event builder
 - fully FPGA-based
 - events stored in external memory
Current COMPASS Data Acquisition Architecture

- **Event builder**
 - fully FPGA-based
 - events stored in external memory
- **Bottleneck:**
 - Memory throughput 3 GB/s
 ⇒ not easy scalable

- **Part of the iFDAQ event builder setup 2017 for COMPASS**
- **Possible extension**
New COMPASS Data Acquisition Architecture

- **Triggered** read out until 2021
 - conventional DAQ architecture with hardware-based trigger logic
- **Triggerless** read out in 2022
 - online filtering by hardware-based trigger logic
 - offline filtering by software-based high-level trigger
New COMPASS Data Acquisition Architecture

Figure: Timeslice in a triggerless readout mode

- **timeslice-based readout**
 - defined for triggerless read-out
 - compatible with old data format
New COMPASS Data Acquisition Architecture

- **timeslice-based readout**
 - defined for triggerless read-out
 - compatible with old data format

- **Triggered** and **triggerless** readout
 - **triggerless**: data frames (images)
 - different size due to different time resolution
 - select images for data reduction
 - **triggered**: events
New COMPASS Data Acquisition Architecture

- Remove bottleneck
 - Pre-sort events before event building
 - increase number of event builder nodes
New COMPASS Data Acquisition Architecture

- Remove bottleneck
 - Pre-sort events before event building
 - Increase number of event builder nodes
- N-to-N switch in FPGA fabric
 - No external memory for data
 - Requires memory in multiplexers
Switch Firmware

- 8 Slink receivers
- TCS receiver
- deep trigger FIFO in DDR3 memory
- 8x8 switch
- 8 6.25 Gb/s 8b/10b Aurora links
 - trigger and switch configuration distribution over sideband link
- slow control over IPbus
 - control
 - configuration
 - diagnostics
Switch Architecture

- **Switch control**
 - change of the switch mapping when frame transmission for a given timeslice complete

![Diagram of Switch Architecture]

- Data from MX
- TCS
- N-to-N Switch
- N-to-N Switch
- N-to-N Switch
- N-to-N Switch
- Shift
- Data to spillbuffer
- Configuration RAM
- IPbus
Switch Architecture

- **Switch control**
 - change of the switch mapping when
 - frame transmission for a given timeslice complete
- **4-to-4 switch**
 - routes frames from an input to a specific output
 - input-output mapping change
 - configuration in BRAM
Switch Algorithm: General Idea

8x8 Switch

Slice1
Slice1
Slice1
Slice1
Slice2
Slice2
Slice2
Slice2
Slice3
Slice3
Slice3
Slice3
Slice4
Slice4
Slice4
Slice4
Slice5
Slice5
Slice5
Slice5
Slice6
Slice6
Slice6
Slice6
Slice7
Slice7
Slice7
Slice7
Slice8
Slice8
Slice8
Slice8

Slice1
Slice2
Slice3
Slice4
Slice5
Slice6
Slice7
Slice8
Switch Algorithm: Details

Slice4
Slice3
Slice2
Slice1

Slice4
Slice3
Slice2
Slice1

Slice4
Slice3
Slice2
Slice1

Slice4
Slice3
Slice2
Slice1

Switch 1.1

Switch 1.2

Switch 2.1

Switch 2.2
Switch Algorithm: Details

Switch 1.1
Switch 1.2
Switch 2.1
Switch 2.2
Switch Algorithm: Details

Switch 1.1
- Slice6
- Slice5
- Slice4
- Slice3
- Slice2
- Slice1

Switch 1.2
- Slice4
- Slice3
- Slice2
- Slice1

Switch 2.1
- Slice4
- Slice3
- Slice2
- Slice1

Switch 2.2
- Slice4
- Slice3
- Slice2
- Slice1
Switch Algorithm: Details

Switch 1.1

Switch 1.2

Switch 2.1

Switch 2.2
Switch Algorithm: Details

Switch 1.1

Switch 1.2

Switch 2.1

Switch 2.2
Eventbuilder Logic in PCIe Card

- Single 6.25 Gb/s 8b/10b Aurora interface
 - Data
 - Trigger information
 - Switch configuration
- Events stored in DDR3 memory
- Combination of events according to
 - event number
 - switch configuration
- Built events pushed to PCIe
- Internal bandwidth 3 GB/s
Performance in Simulation

- Simulation of **1000 events** with real event size distribution

![Event Size (Bytes)](image)

- Simulation of 1000 events with real event size distribution

Assumptions:
- Only event size distribution is used
- Data already available in MX
- 100 MHz clock; 4 Gbps link rate
- 40 kHz trigger rate, Poisson distribution
- Timeslice period: 500 us

Timeslice processing time: 251 ± 13 us
- Limited by the link bandwidth
- Faster processing than event generation

⇒ Proof of the switch concept

Relative processing time

\[T_{\text{processing}} / T_{\text{timeslice}} \]
- Small variation through data rate averaging

⇒ Variation as safety margin for the bandwidth

17
Performance in Simulation

• Simulation of **1000 events** with real event size distribution
• Assumptions:
 − only event size distribution is used
 − data already available in MX
 − **100 MHz clock; 4 Gbps link rate**
 − **40 kHz trigger rate**, Poisson distribution
 − timeslice period: **500 us**
Performance in Simulation

- Simulation of **1000 events** with real event size distribution
- Assumptions:
 - only event size distribution is used
 - data already available in MX
 - 100 MHz clock; 4 Gbps link rate
 - 40 kHz trigger rate, Poisson distribution
 - timeslice period: **500 us**
- Timeslice processing time: **251±13 us**
 - limited by the link bandwidth
 - faster processing than event generation
 ⇒ **Proof of the switch concept**
Performance in Simulation

- Simulation of **1000 events** with real event size distribution
- Assumptions:
 - only event size distribution is used
 - data already available in MX
 - 100 MHz clock; 4 Gbps link rate
 - 40 kHz trigger rate, Poisson distribution
 - timeslice period: **500 us**
- Timeslice processing time: **251±13 us**
 - limited by the link bandwidth
 - faster processing than event generation
 ⇒ **Proof of the switch concept**
- Relative processing time \(\frac{T_{\text{processing}}}{T_{\text{timeslice}}} \)
 - smaller variation through data rate averaging
 ⇒ **variation as safety margin for the bandwidth**
Switch Hardware

- Virtex-6 VLX30T
 - custom board in AMC formfactor
 - VME carrier board
- 16 data links
 - 8x SLinks
 - 8x Aurora 8b/10b
- TCS link for synchronization
- Ethernet for slow control
- 4 GB DDR3 memory for trigger buffering
Spillbuffer Hardware

- Based on commercial hardware
 - Nereid Kintex 7 PCI Express
 - Trenz FMC – SFP adapter
- Kintex 7 XC7K160T FBG676
- 4x PCIe-Gen2 interface
- 4 GB DDR3 memory
- No dedicated TCS interface
Spillbuffer Hardware

- Based on commercial hardware
 - Nereid Kintex 7 PCI Express
 - Trenz FMC – SFP adapter
- Kintex 7 XC7K160T FBG676
- 4x PCIe-Gen2 interface
- 4 GB DDR3 memory
- No dedicated TCS interface

Performance tests

- Local data generator
- Scan in event sizes
- Stable data rate of > 1.6 GB/s
- Drop at small event sizes understood
 - not present in the experiment
Performance in Hardware

- Slink Emulator
 - TCS receiver
 - 8 data generators
 - configurable event size
 - Aurora links with back pressure
 - deep trigger FIFO

8x3.125=25 Gb/s
8b/10b Aurora

2x6.25=12.5 Gb/s
8b/10b Aurora

TCS Controller

Switch

Data/Trigger/Switch configuration

PCle Spillbuffer

PC
Performance in Hardware

- Slink Emulator
 - TCS receiver
 - 8 data generators
 - configurable event size
 - Aurora links with back pressure
 - deep trigger FIFO
- 2 Aurora links to the PCIe event builder node
 - data on 2nd link ignored
Test Results

- Stable operation at 300 MB/s/link
 - consistent data flow
 - correct timeslice processing
Test Results

- Stable operation at **300 MB/s/link**
 - consistent data flow
 - correct timeslice processing
- Throughput limited by link bandwidth
 - can be increased by factor 2 in Virtex-6
Summary and Outlook

- Scalable event builder architecture
- Maximum performance limited by the link bandwidth
- New FPGA-based event builder at COMPASS++/AMBER
 - Switch
 - Spillbuffer
- First operation at COMPASS++/AMBER in November 2020 during the dry run