Integrated real-time supervisory control actuator management for handling of off-normal-events and feedback control of tokamak plasmas

> Trang Vu*, Olivier Sauter, Federico Felici, Alessandro Pau, Cristian Galperti, Marc Maraschek, Natale Rispoli, Bernhard Sieglin, the TCV Team and the MST1 Team

(*) trang.vu@epfl.ch

22nd IEEE Real Time Conference 12-24 October 2020

- 1. Integrated real-time control issue of tokamaks
- 2. Generic plasma control system architecture
- 3. Experimental result
- 4. Conclusion

TCV (Tokamak à Configuration Variable) an ideal test-bed for integrated control

EPFL

Swiss Plasma

Center

Tokamak schematic

TCV inside view

- Located at Swiss Plasma Center (SPC), Lausanne, Switzerland
- First plasma in November 1992
- 16 poloidal field coils & elongated vacuum chamber: strong shaping capabilities
- Neutral beam injection (NBI) + flexible electron cyclotron (EC) systems
- Flexible real-time digital control system

Trang VU | Real Time Conference | October 19th 2020| Page 3 .

Future long pulse experiment (e.g. ITER) will require realtime task prioritization

Future long pulse experiment (e.g. ITER) will require realtime task prioritization

Swiss Plasma Center

Generic PCS architecture: solution with a supervisory layer

Separates clearly responsibility/decision making in various components of PCS

Trang VU | Real Time Conference | October 19th 2020| Page 8 .

ITER example: multi-control tasks and actuators

Swiss Plasma Center

EPFL

Trang VU | Real Time Conference | October 19th 2020 | Page 10 .

EPFL Generic PCS architecture

Separates clearly responsibility/decision making in various components of PCS

[2] T. Blanken et al, Nucl. Fusion **59(2)** 026017 (2019)

Swiss Plasma Center

Trang VU | Real Time Conference | October 19th 2020| Page 11 .

EPFL Tokamak-agnostic layer

Trang VU | Real Time Conference | October 19th 2020| Page 12.

Generic controllers: with standardized interfaces, key for rapid development and maintenance

EPFL

Swiss

Plasma Center

- no danger for event « density limit»
- normal scenario:
 - NBI and gas valve are controlled by the feedforward tasks

EPFL Disruption avoidance discharge with density limit

- low danger for event « density limit»
- normal scenario:
 - NBI and gas valve are controlled by the feedforward tasks
 - + the modifications of DA tasks

Trang VU | Real Time Conference | October 19th 2020| Page 15.

EPFL Disruption avoidance discharge with density limit

- medium danger for event « density limit»
- *recovery* scenario:

Swiss

Plasma

Center

- NBI is controlled by the feedforward
 - + $DA_{power.rec}$ asks for maximum power

Conclusion

- A generic PCS architecture is proposed with a tokamakagnostic layer, device-independent
- The supervisor and actuator manager can simultaneously handle off-normal-events and multiple control objectives
- The **standardized interfaces** between the components facilitate development and implementation (add/remove off-normal-events, controllers,...)
- The proposed PCS is successfully implemented and tested on TCV
- This PCS architecture is proposed to AUG and ITER as well

Trang VU | Real Time Conference | October 19th 2020| Page 18.

Plasma and actuator state reconstruction: actual developed modules on TCV

Trang VU | Real Time Conference | October 19th 2020| Page 19.

EPFL Real-time control and other applications

- Using real-time control for physics based studies
 - control of limit approach rate (from the example, always approach the density limit at slow rate w.r.t the distance)
- Using real-time distance for better H-mode control through pedestal control
 - control of distance to stay at «good H and ELMy phase» (from the example, very nice regular ELMy H-mode, ~constant β_N~1.9)

EPFL Supervisor for disruption avoidance

Swiss Plasma Center

The **supervisor** selects the **appropriate scenario based on** Off-Normal-Events: $E_{d_ne_lim}$: **distance** between the (H_{98y2}, edge density) and the disruption limit $E_{act\ lim}$: **actuator saturation** from actuator state (e.g energy_max)

Three control scenarios with the corresponding control tasks:

scenario		task	controller
normal <i>E_{d_ne_lim}</i> danger= {no, low}	feedforward_power (constant $P_{heat} = 0$. feedforward_gas (constant then fast-	r 65 <i>MW</i>) ramp gas flux)	feedforward
	DA_power DA_gas	$(\Delta P_{heat}(d_{nelim}))$ (slow-ramp gas flux)	disruption- avoidance (DA) controller
recovery	feedforward_power (constant P _{heat})		feedforward
<i>E_{d_ne_lim}</i> danger={medium}	DA_power DA_gas	(maximum <i>P_{heat}</i>) (freeze gas flux)	DA controller
soft-shutdown $E_{d_ne_lim}$ danger = {high} or E_{act_lim} danger = {high}	DA_power DA_gas	(decrease P_{heat} to 0) (decrease gas flux to 0)	DA controller

Trang VU | Real Time Conference | October 19th 2020| Page 21 .