# EasyPET Technologies

22<sup>nd</sup> IEEE Real Time Conference









**P. M. M Correia**<sup>1,2\*</sup>, A.L.M. Silva<sup>1,2</sup>, P.M.C.C. Encarnação<sup>1</sup>, I.F. Castro<sup>2</sup>, F.M. Ribeiro<sup>1</sup>, I. Mohammadi<sup>1</sup>, J.F.C.A. Veloso<sup>1,2</sup>

<sup>1</sup>i3n – Institute for Nanostructures, Nanomodelling and Nanofabrication, Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal

<sup>2</sup> RI-TE, Lda - Radiation Imaging Technologies, Portugal, www.ri-te.pt

<sup>\*</sup>corresponding author pmcorreia@ua.pt

### PET imaging

- PET is a major in vivo nuclear imaging modality that provides functional information of the physiological processes of organs and tissues
- PET has a unique role in oncology, neurology and cardiology due to its capability of disease detection, staging and therapy effect monitoring

PET, combined with morphological imaging through CT or MRI, has a recognized superiority over all other imaging modalities





# Preclinical PET













## PET scanners are too costly and bulky







whole body >3M€

breast >1M€

preclinical 0.5-1M€

### PROBLEM.

PRECLINICAL PET SYSTEMS
COSTS

~ 1.000.000 €

Limited access to:

X CROs

X Universities, Health Schools

" ... this imaging technique has become a critically important tool in animal-based biomedical research. The application of small-animal PET has been expanded into many additional clinical indications."

Small-Animal PET: What Is It, and Why Do We Need It? Rutao Yao, et al.; J Nucl Med Technol 2012; 40:1–9

### easyPET Concept

International patent









Single pair of collinear detectors executing two types of movements, a rotation and a scan, to provide the image reconstruction irrespective of the source position.





2 rotating detector blocks instead of full ring

### easyPET Concept

Reduced system complexity and cost

Intrinsic immunity to acollinear photon emission

Intrinsic immunity to scatter radiation

Intrinsic robustness against parallax error

High spatial resolution, uniform over the FOV















## easyPET Technology

#### Smart rotation of 2 detector modules instead of full ring







cost reduction 5-10x

high quality images res.<1mm

from educational ...

EasyPET.3D

... to preclinical

### easyPET.3D

state-of-the-art detectors





 $\times 10^3$ 



-0.2



#### • simplified readout electronics

- model validation with 16+16 cells, in usage 64 + 64
- 2 x 2 x 30 mm. LYSO scintillators
- 1.3 x 1.3 mm. SiPM MPPCs from Hamamatsu





Ratio [u.a]

### easyPET.3D advantages

- √ uniquely affordable
- ✓ very compact benchtop
- ✓ high performance spatial resolution and uniformity
  (parallax errors can be avoided)
- ✓ real time 3D reconstruction (GPU accelerated)
- ✓ adjustable field-of-view, up to ~ 7×5 cm
- ✓ intelligent scan of specific regions of interest
- ✓ all-in-one, streamlined software



Parallax effect in ring-based PET

### easyPET.3D applications

- 3D PET image reconstruction and analysis
- in-vivo molecular imaging of mice, zebrafish, plants, ... (18F, 68Ga, 124I, 89Zr, 64Co, 22Na)
- fast dynamic scans in the first minutes post-injection (complementing existing high-end preclinical PET systems)
- hands-on professional training of PET procedures:
   calibrations, protocols, acquisitions, positioning, phantom imaging

Nuclear Medicine, Medical Imaging, Radiopharmacy, Biomedical Engineering

### easyPET.3D Image Reconstruction



### Computation problem

Based on the rotation of 2 detector modules achieving very **high spatial resolution** and sampling with only a small number of cells.

The 2 motors can sample each an angle as small as **0.014°** resulting in **billions** of possible ToRs resulting in a image reconstruction **challenge**.

#### **Solution:**

More than 2600 millions of possible ToRs for 64 crystals on each side

#### **GPU**

Image reconstruction and on-the-fly calculation approach

### easyPET.3D Image Reconstruction - GPU



#### GPU implementation:

- Forward projection ToR-driven approach where each ToR is assigned to an independent GPU thread.
- Back projection a voxel-driven approach was chosen to avoid race conditions.

The image update and normalization is performed by the CPU.

The algorithm described was developed with single-kernel approach for each operation.

Preliminary results show a possible speed up of **3 to 4 times** by using a multiple kernel approach and optimizing the load transfers to the GPU.

for a Nvidia 2080 Ti

Current Speed  $\sim 0.2 \times 10^{12}$  updated voxels per second

First (Coarse) Images available in seconds

### easyPET.3D Phantoms and point source



With a higher scanning granularity



Measured at 10.4 mm from the center FoV with 20 mm radius



### easyPET.3D Preclinical Studies



The image shows a healthy mouse injected with 7.8 MBq of <sup>18</sup>F-NaF bone tracer acquired by easyPET.3D

**Hypothesis:** Bone metastasis could grow from WiDr cell line (human colon cancer)?

Balb/c nude healthy mouse (control) versus



8.2 MBq of <sup>18</sup>F-NaF

5.5 MBq of <sup>18</sup>F-NaF

#### dedicated GUI



### Acknowledgements













Special thanks to Prof. Dr. Ana Cristina Santos (IBILI-ICBR) for the small mice studies and the Coimbra University Hospital (CHUC) for the supply of <sup>18</sup>F radiopharmaceuticals.

P. M. C. C. Encarnação and F. M. Ribeiro are thankful to FCT (Fundação para a Ciência e Tecnologia) for PhD grants SFRH/BD/143964/2019 and SFRH/BD/137800/2018.

This work was supported by project CENTRO-01-0247-FEDER-039880, co-financed by the EU through ERDF (CENTRO2020 program).







# Keep PET simple!







# Backup Slides



### **Partners**















Universidade de Coimbra

























Europe



Karolinska Institute (Sep. 2019)





2020 - place easyPET.3D for pilots/benchmarking at

Karolinska Institute:

in the field

world top R&D institute



Uppsala Univ.

Sweden

IP (patent) rights Germany Market potential

Partners / Users



Market potential

**Partners** 





France

Italy

UK

Spair

