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Why do we need Real-Time ML
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Credit : CERNSource : Hegeman, J. (2018)

200 GB/s

2000 
compute nodes

2.5 GB/s

LARGE HADRON COLLIDER



Why do we need Real-Time ML
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Credit : CERNSource : Hegeman, J. (2018)

5500 GB/s

TBD 
compute nodes

61 GB/s

Hi-Luminosity Upgrade



Why do we need Real-Time ML

4 Source : Bortoletto, D. (2019)

2 000 000 GB/s

TBD 
Compute nodes

FUTURE CIRCULAR COLLIDER

2 MW



Why do we need Real-Time ML
LINAC Coherent Light Source

• Assuming 1 TB/s, 12 hour shift, nonstop
• 43 200 TB per shift – 56 years of 4K movies
• 1.3 M$/month of storage costs created every shift
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20 to 1200 GB/s



What is Machine Learning?
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What is Machine Learning
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Input Program Output

Traditional programming

Input ProgramOutput

Machine Learning
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What is Machine Learning

8 https://www.asimovinstitute.org/neural-network-zoo/

Decision Trees

Random Forest

Perceptron

FeedForward
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What is Machine Learning

9 Phung V. H. and Rhee, J. R., DOI : 10.3390/app9214500

Convolutional neural network

Image 
recognition
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What is Machine Learning
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Recurrent Neural Network

Time series data
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Time series data



What is Machine Learning

11 Phung V. H. and Rhee, J. R., DOI : 10.3390/app9214500

Autoencoders
Data compression
Feature extraction
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Benefits of ML
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Recognizing patterns

Recognizing
anomalies

Non linear regression
 reconstruction
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Benefits of ML
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Faster more flexible 
programming

Lower computational
burden

Fast inference
Low latency decision
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Hardware
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ML Hardware - GPU

15 https://nyu-cds.github.io/python-gpu/01-introduction/

Thousands of ALU

Highly parallel

Batch oriented

Host CPU

Power

Size
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ML Hardware - FPGA
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Reconfigurable

Efficient

I/O capacity

Programming

Limited clock

Limited resources

Logic
Memory
Digital signal processing slices
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ML Hardware - ASIC
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Efficient++

Custom I/O

3DIC

Reconfigurable

Expensive

Long design cycle

TSMC

IBM
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Cookiebox
Proof of concept
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CookieBox
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N. Hartmann et al., Nature Photonics, 2018
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CookieBox
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Detector
Online analysis

nodes
Disks

Detector EdgeML
Online analysis

nodes
Disks

Source

DAQ
(ASIC/FPGA)
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CookieBox
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DISCARD

SAVE

Neuron

Data buffer

Complex 
reconstruction
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CookieBox
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Layer 1 : 800 inputs
Layer 2 : 200 inputs
Output Layer : 100 

inputs

Maximum theoretical 
throughput R :

𝑅 =
1

𝑀𝐴𝑋 (𝑙𝑎𝑦𝑒𝑟 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)

R (62,5 MHz) = 77 kHz
R (250 MHz) = 308 kHz

19.3

4.8
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Other projects
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Liquid Argon detectors for dark matter search
Global Argon Dark Matter Collaboration

CPAD2019

~1.2 GB/s
DS20K Veto system

Billion-pixel camera for X-ray applications
Hu, C. et al, 2019

doi.org/10.1016/j.nima.2019.06.011
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~2GB per image



Other projects
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Time of Flight Computed Tomography
Rossignol, J. et al. 2020 

doi.org/10.1088/1361-6560/ab78bf

~120 TB/s
14x14 cm2
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Pitfalls
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Training Datasets
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Dataset

Simulated Measured

• Model validation
• Bias
• Added noise

• Extracting labels
• Anomalies
• Format
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User endorsement

How do we convince the users of the instruments that 
the machine learning inference gives them accurate 

information?

• Validation
• Interpretation

• Uncertainty measurement
• Raw data sampling
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Data and model provenance
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Dataset

Model 1

Model 2

Model 3

Dataset

Dataset

Dataset

Model 4
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Conclusion
Edge Machine Learning is key to exploit 
the full potential of new high rate 
detectors and will accelerate critical
discoveries…

…but we have a lot of work to do!

Detector EdgeML
Online analysis

nodes
Disks

Source


