Machine Learning at the Edge for Real Time Data Processing

Audrey Corbeil Therrien

October 2020

Why do we need Real-Time ML

LARGE HADRON COLLIDER

Credit : CERN

200 GB/s

2000 compute nodes

2.5 GB/s

Source : Hegeman, J. (2018)

Why do we need Real-Time ML

5500 GB/s

TBD compute nodes

61 GB/s

Source : Hegeman, J. (2018)

Hi-Luminosity Upgrade

Credit : CERN

Why do we need Real-Time ML LINAC Coherent Light Source

5.

5

20 to 1200 GB/s

- Assuming 1 TB/s, 12 hour shift, nonstop
- 43 200 TB per shift 56 years of 4K movies
- 1.3 M\$/month of storage costs created every shift

3!T

What is Machine Learning?

	3!T	
	What is ML?	
	Hardware	
	CookieBox	
Å	Pitfalls	
	Conclusion	
×	•	
X	11	

What is Machine Learning

Autoencoders

Data compression Feature extraction

Phung V. H. and Rhee, J. R., DOI: 10.3390/app9214500

	BIT What is ML?
	Hardware
	CookieBox
	Pitfalls
	Conclusion
K	12

Benefits of ML

Recognizing patterns

Recognizing anomalies

Non linear regression \rightarrow reconstruction

BIT What is ML?
Hardware
CookieBox
Pitfalls
Conclusion
13

Benefits of ML

Faster more flexible programming

Lower computational burden

Fast inference Low latency decision

3!T

Hardware

ML Hardware - FPGA

	Reconfigurable
	Efficient
	I/O capacity
	Programming
	Limited clock
	Limited resource

ources

ML Hardware - ASIC

Efficient++ Custom I/O 3DIC Beconfigurable Expensive Long design cycle

Cookiebox Proof of concept

3!T

Other projects

UAr Condenser

DarkSide-20k

Optical & EM

barrier

nVeto

TPC

Cryostat

Gas Pumps

Billion-pixel camera for X-ray applications

Hu, C. et al, 2019 doi.org/10.1016/j.nima.2019.06.011

~2GB per image

Liquid Argon detectors for dark matter search

Global Argon Dark Matter Collaboration CPAD2019

> ~1.2 GB/s DS20K Veto system

Other projects

Time of Flight Computed Tomography

Rossignol, J. et al. 2020 doi.org/10.1088/1361-6560/ab78bf

> ~120 TB/s 14x14 cm²

3!T

Pitfalls

3!T
What is ML?
Hardware
CookieBox
Pitfalls
Conclusion

User endorsement

How do we convince the users of the instruments that the machine learning inference gives them accurate information?

- Validation
- Interpretation
- Uncertainty measurement
 - Raw data sampling

Conclusion

Edge Machine Learning is key to exploit the full potential of new high rate detectors and will accelerate critical discoveries...

...but we have a lot of work to do!

SUNIVERSITÉ DE SHERBROOKE

Bourses postdoctorales Banting Postdoctoral Fellowships

SLACE NATIONAL ACCELERATO LABORATOR