hls4ml tutorial
IEEE Real Time 2020
Introduction

- **hls4ml** is a package for translating neural networks to FPGA firmware for inference with extremely low latency on FPGAs
 - https://github.com/hls-fpga-machine-learning/hls4ml
 - https://fastmachinelearning.org/hls4ml/
 - `pip install hls4ml`

- In this session you will get hands on experience with the **hls4ml** package

- We’ll learn how to:
 - Translate models into synthesizable FPGA code
 - Explore the different handles provided by the tool to optimize the inference
 - Latency, throughput, resource usage
 - Make our inference more computationally efficient with pruning and quantization
hls4ml origins: triggering at (HL-)LHC

Extreme collision frequency of 40 MHz \rightarrow extreme data rates $O(100 \text{ TB/s})$
Most collision “events” don’t produce interesting physics
“Triggering” $=\,$ filter events to reduce data rates to manageable levels
LHC Experiment Data Flow

- **L1 trigger:**
 - 40 MHz in / 100 KHz out
 - Process 100s TB/s
 - Trigger decision to be made in ≈ 10 μs
 - Coarse local reconstruction
 - FPGAs / Hardware implemented
Deploy ML algorithms very early in the game
Challenge: strict latency constraints!
The challenge: triggering at (HL-)LHC

The trigger discards events *forever*, so selection must be very precise.

ML can improve sensitivity to rare physics.

Needs to be *fast*!

Enter: **hls4ml** (high level synthesis for machine learning)
hls4ml: progression

- Previous slides showed the original motivation for hls4ml
 - Extreme low latency, high throughput domain
- Since then, we have been expanding!
 - Longer latency domains, larger models, resource constrained
 - Different FPGA vendors
 - New applications, new architectures
- While maintaining core characteristics:
 - “Layer-unrolled” HLS library → not another DPU
 - Extremely configurable: precision, resource vs latency/throughput tradeoff
 - Research project, application- and user-driven
 - Accessible, easy to use
Recent Developments

hls4ml community is very active!

- **Binary & Ternary neural networks:** [2020 Mach. Learn.: Sci. Technol]
 - Compressing network weights for low resource inference
- **Boosted Decision Trees:** [JINST 15 P05026 (2020)]
 - Low latency inference of Decision Tree ensembles
- **GarNet / GravNet:** [arXiv: 2008.03601]
 - Distance weighted graph neural networks suitable for sparse and irregular point-cloud data, such as from LHC detectors
 - Implemented with low latency for FPGAs in hls4ml
- **Quantization aware training QKeras + support in hls4ml:** [arXiv: 2006.10159]
A few exciting new things should become available soon (this year):

- Intel Quartus HLS & Mentor Catapult HLS ‘Backends’
- Convolutional Neural Networks
 - Much larger models than we’ve supported before
- Recurrent Neural Networks
- More integrated ‘end-to-end’
- flow with bitfile generation
- and host bindings for
- platforms like Alveo, PYNQ
high level synthesis for machine learning

Keras + TensorFlow

model

compressed model

Usual ML software workflow

PBS

Keras
TensorFlow
PyTorch

...

HLS conversion

HLS project

tune configuration
precision reuse/pipeline

Co-processing kernel

Custom firmware design

https://hls-fpga-machine-learning.github.io/hls4ml/

15th October 2020
Neural network inference

\[x_n = g_n \left(W_{n-1} x_{n-1} + b_n \right) \]

- Neural network inference
- Precomputed and stored in BRAMs
- DSPs
- Logic cells
- Multiplication
- Addition
- Activation: ReLU
- SoftMax

\[N_{\text{multiplications}} = \sum_{n=2}^{N} L_{n-1} \times L_n \]

- Input layer
- Hidden layers
- Output layer
- M hidden layers
- N layers
Neural network inference

\[x_n = g_n(W_{n-1}x_{n-1} + b_n) \]

How many resources? DSPs, LUTs, FFs?
Does the model fit in the latency requirements?

\[N_{\text{multiplications}} = \sum_{n=2}^{N} L_{n-1} \times L_n \]

16 inputs
64 nodes
5 outputs
activation: SoftMax
Efficient NN design for FPGAs

FPGAs provide huge flexibility

Performance depends on how well you take advantage of this

Today you will learn how to optimize your project through:

- **Compression**: reduce number of synapses or neurons
- **Quantization**: reduces the precision of the calculations (inputs, weights, biases)
- **Parallelization**: tune how much to parallelize to make the inference faster/slower versus FPGA resources

Constraints:
- Input bandwidth
- FPGA resources
- Latency
Today’s **hls4ml** hands on

• Part 1:
 - Get started with hls4ml: train a basic model and run the conversion, simulation & c-synthesis steps

• Part 2:
 - Learn how to tune inference performance with quantization & ReuseFactor

• Part 3:
 - Perform model compression and observe its effect on the FPGA resources/latency

• Part 4:
 - Train using QKeras “quantization aware training” and study impact on FPGA metrics
hls4ml tutorial

Part 1: Model Conversion
Physics case: jet tagging

Study a multi-classification task to be implemented on FPGA:
discrimination between highly energetic (boosted) q, g, W, Z, t initiated jets

Jet = collimated ‘spray’ of particles

$t \rightarrow bW \rightarrow bqq$

3-prong jet

$Z \rightarrow qq$

2-prong jet

$W \rightarrow qq$

2-prong jet

q/g background

no substructure and/or mass ~ 0

Reconstructed as one massive jet with substructure
Physics case: jet tagging

Input variables: several observables known to have high discrimination power from offline data analyses and published studies [*]

Physics case: jet tagging

- We’ll train the five class multi-classifier on a sample of ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti-k_T jets
 - Dataset DOI: 10.5281/zenodo.3602254
 - OpenML: https://www.openml.org/d/42468
- Fully connected neural network with 16 expert-level inputs:
 - **Relu activation function** for intermediate layers
 - **Softmax activation function** for output layer

AUC = area under ROC curve (100% is perfect, 20% is random)
Hands On - Setup

• The interactive part is served with Python notebooks
• Open https://cern.ch/ssummers/ieeert in your browser
• Authenticate with your Github account (login if necessary)
• Open and start running through “part1_getting_started”!
• If you’re new to Jupyter notebooks, select a cell and hit “shift + enter” to execute the code
hls4ml Tutorial

Part 2: Advanced Configuration
Efficient NN design: quantization

- In the FPGA we use fixed point representation
 - Operations are integer ops, but we can represent fractional values
- But we have to make sure we’ve used the correct data types!

\[\text{ap_fixed<width\ bits,\ integer\ bits>} \]

\[\begin{array}{c}
\text{0101.1011101010} \\
\text{integer} & \text{fractional} & \text{width}
\end{array}\]

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance at 6 integer bits
Full performance at 8 fractional bits
Efficient NN design: parallelization

- Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in each layer.
- Configure the “reuse factor” = number of times a multiplier is used to do a computation.

Reuse factor: how much to parallelize operations in a hidden layer.

[Diagram showing parallelization levels with labels for fully serial, reuse factors, and fully parallel configurations.]

- Fully serial: Fewer resources, Lower throughput, Higher latency
- Fully parallel: More resources, Higher throughput, Lower latency
Parallelization: DSP usage

- Fully parallel
 - Each mult. used 1x
- More resources
- Each mult. used 2x
- Each mult. used 3x
- Longer latency
Parallelization: Timing

Latency of layer m

$$L_m = L_{\text{mult}} + (R - 1) \times I I_{\text{mult}} + L_{\text{activ}}$$

- Fully parallel: Each mult. used 1x
- Each mult. used 3x
- Each mult. used 6x

~ 175 ns

~ 75 ns

Longer latency

More resources
Part 2: Large MLP

• ‘Strategy: Resource’ for larger networks and higher reuse factor

• Uses a slightly different HLS implementation of the dense layer to compile faster and better for large layers

• Here, we use a different partitioning on the first layer for the best partitioning of arrays

This config is for a model trained on the MNIST digits classification dataset
Architecture (fully connected): 784 → 128 → 128 → 128 → 10
Model accuracy: ~97%

We can work out how many DSPs this should use...
Part 2: Large MLP

- It takes a while to synthesise, so here’s one I made earlier…

- The DSPs should be: \((784 \times 128) / 112 + (2 \times 128 \times 128 + 128 \times 10) / 128 = 1162 \)

 \[
 \text{Timing (ns):}
 \begin{array}{l}
 \text{Clock} | \text{Target} | \text{Estimated} | \text{Uncertainty} \\
 \text{ap clk} | 5.00 | 4.375 | 0.62 \\
 \end{array}
 \]

 \[
 \text{Latency (clock cycles):}
 \begin{array}{l}
 \text{Latency} | \text{Interval} | \text{Pipeline} \\
 \text{min} | \text{max} | \text{min} | \text{max} | \text{Type} \\
 518 | 522 | 128 | 128 | \text{dataflow} \\
 \end{array}
 \]

II determined by the largest reuse factor
hls4ml Tutorial

Part 3: Compression
NN compression methods

• Network compression is a widespread technique to reduce the size, energy consumption, and overtraining of deep neural networks.

• Several approaches have been studied:
 - **parameter pruning**: selective removal of weights based on a particular ranking [arxiv.1510.00149, arxiv.1712.01312]
 - **low-rank factorization**: using matrix/tensor decomposition to estimate informative parameters [arxiv.1405.3866]
 - **transferred/compact convolutional filters**: special structural convolutional filters to save parameters [arxiv.1602.07576]
 - **knowledge distillation**: training a compact network with distilled knowledge of a large network [doi:10.1145/1150402.1150464]

• Today we’ll use the tensorflow model sparsity toolkit
 - https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

• But you can use other methods!
TF Sparsity

- Iteratively remove low magnitude weights, starting with 0 sparsity, smoothly increasing up to the set target as training proceeds.
Efficient NN design: compression

- DSPs (used for multiplication) are often limiting resource
 - maximum use when fully parallelized
 - DSPs have a max size for input (e.g. 27x18 bits), so number of DSPs per multiplication changes with precision

Fully parallelized (max DSP use)

70% compression ~ 70% fewer DSPs
hls4ml Tutorial

Part 4: Quantization
Efficient NN design: quantization

• hls4ml allows you to use different data types everywhere, we will learn how to use that

• We will also try quantization-aware training with QKeras (part 4)

• With quantization-aware we can even go down to just 1 or 2 bits
QKeras

- QKeras is a library to train models with quantization in the training
 - Maintained by Google
- Easy to use, drop-in replacements for Keras layers
 - e.g. Dense → QDense
 - e.g. Conv2D → QConv2D
 - Use ‘quantizers’ to specify how many bits to use where
 - Same kind of granularity as hls4ml
- Can achieve good performance with very few bits
- We’ve recently added support for QKeras-trained models to hls4ml
 - The number of bits used in training is also used in inference
 - The intermediate model is adjusted to capture all optimizations possible with QKeras
Summary

• After this session you’ve gained some hands on experience with **hls4ml**
 - Translated neural networks to FPGA firmware, run simulation and synthesis

• Tuned network inference performance with precision and ReuseFactor
 - Used profiling and trace tools to guide tuning

• Seen how to simply prune a neural network and the impact on resources

• Trained a model with small number of bits using Qkeras, and use the same spec in inference easily with **hls4ml**

• You can find these tutorial notebooks to run yourself: https://github.com/hls-fpga-machine-learning/hls4ml-tutorial
 - They will be updated with what you saw today in the comings days

• You can run the tutorial Docker image yourself like:
 - `docker run -p 8888:8888 gitlab-registry.cern.ch/ssummers/hls4ml-tutorial:9`
 - No FPGA tools on this one!

• Use hls4ml in your own environment: `pip install hls4ml[profiling]`