





# LAPP IPMC Usage in LAr System

# **IPMC Workshop**

9 October 2018

Alexis Vallier on behalf of the LAr Phase-1 Upgrade team

### **Additional LAr Electronics for Run-3**



#### 9/10/2018

# **Additional LAr Electronics for Run-3**

#### • **MMC**:

- Supports IPMI commands
- AMC power & sensors reading (I,V,T)
- Discuss to IPMC via
   IPMB-L bus (I2C)

#### • IPMC :

- Carrier power & sensors reading (I,V,T)
- Discuss to shelf manager and AMC MMC

#### LAr Back End Boards



### **Setup @ LAr electronics Lab (EMF)**





#### 9/10/2018

### **Setup @ LAr electronics Lab (EMF)**



# **LAPP-IPMC Usage in LAr**

- LAPP-IPMC is used to
  - Manage the power on the Carrier and the 4 AMC boards
  - Read the Current, Voltage and Temperature sensors : provide this info to Shelf Manager & DCS system
  - Program the Carrier and LATOME FPGA via ethernet (Not yet tested)
- Shelf Manager : regulates fan speed depending on the boards temparature
  - Alert thresholds are set by the user (we want our FPGA temperature < 80°C)
- DCS : keep history of the sensor values (in future should handle alerts)

# **Shelf Manager Web Page at LAr EMF**



Pigeon Point<sup>™</sup> Shelf Manager Main Page

- <u>Alarm</u>
- Board Information
- <u>Fan Information</u>
- FRU Activation/Deactivation
- FRU Information
- <u>Get Fan Level</u>
- <u>Get FRU LED State</u>
- Get IPMB State
- Get LAN Configuration Parameters
   Cet PEE Configuration Parameters
- Get PEF Configuration Parameters
   Get Pigeon Point MIB Files
- Get Pigeon Point MIB F
   Get Sensor Thresholds
- Get Sensor Hysteresis
- Get Sensor Event Enable Mask
- IPM Controller Information
- Parsed FRU Data
- <u>Raw FRU Data</u>
- <u>Reset Board</u>
- <u>Sensor Data</u>
- <u>Sensor Information</u>
- <u>Session Information</u>
   <u>Set Fan Level</u>
- Set FRU LED State
- <u>Set IPMB State</u>
- Set LAN Configuration Parameters
- Set PEF Configuration Parameters
- <u>Set Sensor Thresholds</u>
- <u>Set Sensor Hysteresis</u>
- Set Sensor Event Enable Mask
- <u>Shelf Information</u>
- <u>Switchover</u>
- <u>System Event Log</u>
- <u>Unhealthy System Components</u>
- Version Information

E Intelligent platform management Controller softwARE

• OEM commands

- Web page heavily used during our tests
  - Much more user-friendly than CLI
  - Check of boards correct detection and activation
  - Check sensor values
  - System Event Log
  - Set manually Fan Level

#### 9/10/2018

# **Board Information**



#### Pigeon Point™ Shelf Manager Main Page



- FRU Activation/Deactivation
- FRU Information
- Get Fan Level
- Get FRU LED State
- Get IPMB State
- Get LAN Configuration Parameters
- Get PEF Configuration Parameters
- <u>Get Pigeon Point MIB Files</u>
   <u>Cet Concern Threads alder</u>
- <u>Get Sensor Thresholds</u>
   <u>Cet Sensor Hystoresis</u>
- <u>Get Sensor Hysteresis</u>
   <u>Cot Sensor Event Enable</u>
- <u>Get Sensor Event Enable Mask</u>
  IPM Controller Information
- <u>IPM Controller Info</u>
   Parsed FRU Data
- Raw FRU Data
- Raw FRU Dat
- Board Information list the boards in the crate (FRU)
  - List by Physical Slots
  - Gives boards actual and previous
     states : Is my board « Active » (M4) ?

#### **Board Information**

| Phy         | sical Slot # 1 a CEY hoard                                                                                                                                                                                                       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9a:         | FRU # 0<br>Entity: (0x0, 0x0)<br>Hot Swap State: M1 (Inactive), Previous: M6 (Deactivation In Progress), Last State Change Cause: Normal State Change (0x0)<br>Device ID String: " "                                             |
| 9a:         | <pre>FRU # 1<br/>Entity: (0xf2, 0x60)<br/>Hot Swap State: M1 (Inactive), Previous: M6 (Deactivation In Progress), Last State Change Cause: Normal State Change (0x0)<br/>Device ID String: "BNL ShelfFRU "</pre>                 |
| Phy:<br>82: | sical Slot # 7<br>Entity: (0xa0, 0x60) Maximum FRU device ID: 0x08<br>PICMG Version 2.1<br>Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0)                 |
| 82:         | FRU # 0<br>Entity: (θxa0, θx60)<br>Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (θx0)<br>Device ID String: "ATC807"                                           |
| Phy<br>8c:  | sical Slot # 10         Entity: (0xa0, 0x60) Maximum FRU device ID: 0x10         PICMS Version 2.1         Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0) |
| 8c:         | FRU # 0<br>Entity: (0xa0, 0x60)<br>Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0)<br>Device ID String: "LAr Carrier"                                      |
| 8c:         | FRU # 1<br>Entity: (0xf2, 0x60)<br>Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0)<br>Device ID String: "LArC ShelfFRU"                                    |
| 8c:         | FRU # 2 (AMC # 7)<br>Entity: (Bxcl, 0x67)<br>Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0)<br>Device ID String: "LATOME"                                 |
| 8c:         | FRU # 3 (AMC # 8)<br>E <del>ntity: (0xcl, 0x60)</del><br>Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0)<br>Device ID String: "LATOME"                     |

#### 9/10/2018

# **Sensor Data**



#### Pigeon Point<sup>™</sup> Shelf Manager Main Page

| • <u>Alarm</u>                                       |
|------------------------------------------------------|
| <ul> <li><u>Board Information</u></li> </ul>         |
| <ul> <li>Fan Information</li> </ul>                  |
| <ul> <li>FRU Activation/Deactivation</li> </ul>      |
| <ul> <li>FRU Information</li> </ul>                  |
| <ul> <li>Get Fan Level</li> </ul>                    |
| Get FRU LED State                                    |
| Get IPMB State                                       |
| <ul> <li>Get LAN Configuration Parameters</li> </ul> |
| <ul> <li>Get PEF Configuration Parameters</li> </ul> |
| <ul> <li>Get Pigeon Point MIB Files</li> </ul>       |
| <ul> <li>Get Sensor Thresholds</li> </ul>            |
| Get Sensor Hysteresis                                |
| <ul> <li>Get Sensor Event Enable Mask</li> </ul>     |
| <ul> <li>IPM Controller Information</li> </ul>       |

| Choose the request type                                   |                         |
|-----------------------------------------------------------|-------------------------|
| O Standard                                                | By Site Type / Number   |
| IPMB Address                                              | Board ~                 |
|                                                           | Site Number: 10         |
| Sensor Name or LUN:S                                      | ensor #:                |
| Choose verbosity level:<br>Overbose Mode<br>Ordinary Mode |                         |
| Press Submit to retrieve                                  | the Sensor Data: Submit |
|                                                           |                         |

Sensor Data

Pigeon Point<sup>™</sup> Shelf Manager

#### Sensor Data gives quick reading to sensor values

PIGEON

- DCS have access to this data (use Sensor number to identity it)
- Caveat : for the moment sensor numbers are dynamically allocated (according to who is turn on first)

| Sensor Data Information                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <pre>8c: LUN: 0, Sensor # 47 ("AMC3 Voltage") Type: Threshold (0x01), "Voltage" (0x02) Belongs to entity (0xa0, 0x60): FRU # 0 Status: 0xc0 All event messages enabled from this sensor Sensor scanning enabled Initial update completed Raw data: 159 (0x9f) Processed data: 11.925000 Volts Current State Mask: 0x00</pre>             |  |  |  |  |
| <pre>8c: LUN: 0, Sensor # 48 ("AMC4 Voltage") Type: Threshold (0x01), "Voltage" (0x02) Belongs to entity (0xa0, 0x60): FRU # 0 Status: 0xc0     All event messages enabled from this sensor     Sensor scanning enabled     Initial update completed Raw data: 160 (0xa0) Processed data: 12.000000 Volts Current State Mask: 0x00</pre> |  |  |  |  |

#### 9/10/2018

Parsed FRU Data
 Raw FRU Data
 Acceleration
 Sensor Data

### **OEM commands**



# **DCS screenshots : LATOME current**



Running : 3 LArC with 12 LATOME

9/10/2018

# **DCS screenshots : LATOME Voltage**



#### **Stable voltages : 12V** IPMC Workshop | LAr IPMC usage

9/10/2018

# **DCS screenshots : LATOME Temperature**



#### Fan speed oscillates between 10 and 12 (over 15)

9/10/2018

# Main issues encountered

- Integration tests of LArC and LATOME unveiled several bugs in IPMC software
- Main observations from the user side :
  - Inopportune reboot of IPMC  $\rightarrow$  reboot of LArC and LATOME
  - Sometimes after reboot some AMC were not powered up anymore
  - Instability increased with numbers of AMC hosted in a carrier
    - At beginning : no AMC  $\rightarrow$  no reboot, 1 AMC  $\rightarrow$  reboot after 1 day, 4 AMC  $\rightarrow$  after 30min
- These crashs had different origins
  - I2C bus issues
  - Power sequence not robust enough
  - Communications between IPMC and IOF µControllers not robust enough

# I2C bus issue

- Sometimes IPMC-Shelf Manager & IPMC-AMCs communications lost
  - Fix bus error handling (reset i2c interface)
  - Fix AMC bus busy (both IPMC software and MMC software)
  - Fix memory leak when deleting a too old IPMB request message
  - Memory allocation was not I2C-interrupt safe



IPMC Workshop | LAr IPMC usage

# **AMC power sequence**

- When rebooting IPMC, AMC were not always powered up correctly :
  - Stuck in deactivation state (blue LED blinking)
    - Fix carrier management power sequence
  - Stuck in inactive state (blue LED on)
    - Fix IPMB retry process, when timeout
  - Failure of MMC power sequence
    - Oocurs when power not yet stabilized
    - Mechanism to delay and automatically restart power sequence in case of failure



# **Communication between IPMC & IOIF**

- IPMC : communications to Shelf Mangaer & AMCs
- IOIF : sensors reading, firmware upgrade, JTAG programming
- Sometimes communication between IPMC and IOIF was lost
  - Fix error propagation, retry process when timeout, assignment in message sequence
  - Fix memory leak when deleting a message that was too old



# **Ongoing Issue**

- Still an issue remaining on the IPMB-L bus, that triggers a reboot of the IPMC (when using AMC)
  - IPMC-AMC communication lost, after 5 retries  $\rightarrow$  reboot
  - At worst occurs every two days with 3 LATOME
  - Experts are working on it ;-)
- Not an easy task to debug this kind of memory corruption :
  - Software behaviour change when you had « printouts »
  - Not easy to find patterns, when you have to wait several days for an occurrence
  - Not same behaviour on different setups



### **Foreseen Developments**

- Fix remaining IPMB-L bug
- Test SVF player to program FPGA via ethernet
- Static allocation of sensor numbers, to not mix AMC sensors in DCS
- On DCS side, ignore unvalid sensor values ?

# Conclusion

- LAPP-IPMC is daily used in ATLAS LAr Phase-1 Back End Electronics boards
  - Boards are correctly powered
  - Automatic cooling of the ATCA crate is effective
  - Current, Voltage and Temperature sensors are monitored, up to a DCS interface
  - Several bugs were solved
  - Stable system over several days even with several AMC

### BACKUP

### **DCS screenshots : LArC Current & Temperature**

Total Current





### **LAr Phase-1 Electronics**



# Setup @ EMF

- 3 LPDB :
  - LArC : 1 v2.1, 2 v3
  - LATOME : 5 v2, 7 v3
- Two FELIX PC (VC709)
  - One for LTDB, one for LDPB
- One local monitoring PC (10GbE)
- One hardware monitoring PC (DCS)



# Setup @ EMF







# Setup @ EMF



# **Summary on Power & Tempareture** (as of PRR)

- With final setup with 12 LATOME, running LATOME code with basic  $E_T$  computation :
  - Total Current: 23.70 A  $\rightarrow$  284W (max allowed 400W)
  - Temperature LArC: 36°C (max allowed 70°C)
  - **AMC1 : 5.50 A**, **75°C** (max allowed 6.7 A, 85°C)
  - AMC2 : 5.45 A, 71°C
  - AMC3 : 5.15 A, 62°C
  - AMC4 : 4.55 A, 51°C
- The temperature and power requirements are fulfilled
  - The cooling with the production version of the LArC will even be improved
    - The test version of LArC have connectors to host 8 compact-sized AMC, that slow the air flow

