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& Run 2: 0(1) kHz single events...

—

* What data will we see with the ALICE Upgrade...?

Proton-Proton
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Run 2: O(1) kHz single events...

Proton-Lead

Proton-Proton
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Proton-Lead

~ Lead-Lead
Proton-Proton
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Run 2: O(1) kHz single events = Run 3: 50 kHz continuous data

Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.
Timeframe of 2 ms.
— Tracks of different collisions shown in different color.

3 YAk

David Rohr,
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Run 2: O(1) kHz single events = Run 3: 50 kHz continuous data

Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.
Timeframe of 2 ms.
Tracks of different collisions shown in different color.

What are the challenges:
* Reconstruct 50x more e

Scope of this talk:
+  Track reconst

David Rohr,
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Tracking in ALICE in Run 3

* ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)
* 7layers ITS (Inner Tracking System — Silicon Tracker)
* 152 pad rows TPC (Time Projection Chamber)
* 6 layers TRD (Transition Radiation Detector)
* 1layer TOF (Time Of Flight Detector)

10.7.2018 David Rohr, drohr@cern.ch
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& Tracking in ALICE in Run 3
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* ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)

7 layers ITS (Inner Tracking System — silicon tracker)
152 pad rows TPC (Time Projection Chamber)

6 layers TRD (Transition Radiation Detector)

1 layer TOF (Time Of Flight Detector)

Two reconstruction phases in Run 3:

Synchronous reconstruction (during data taking):

— Calibration
— Data compression

Asynchronous reconstruction (when no beam):

— Full reconstruction with final calibration }\

10.7.2018
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Readout nodes

Synchronous processing

- Local processing

500 GB

- Event / timeframe building
- Calibration / reconstruction

Asynchronous processing

2

Reprocessing with full
calibration

Full reconstruction

Data links from detectors >3 TB/s

—
(0)]

During
data-taking

During
no beam

Compressed

Reconstructed Data Raw Data
Permanent storage <100 GB/s
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Tracking in ALICE in Run 3

* ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)

* 7layers ITS (Inner Tracking System — silicon tracker)
* 152 pad rows TPC (Time Projection Chamber)

* 6 layers TRD (Transition Radiation Detector)
+ 1 layer TOF (Time Of Flight Detector)

Two reconstruction phases in Run 3:
*  Synchronous reconstruction (during data taking):
— Calibration
— Data compression
* Asynchronous reconstruction (when no beam):

Partial ITS + TPC + TRD tracking
- reduced statistics sufficient
(calibration based on matching of TPC/ITS / TRD tracks and
TPC residuals v.s. TRD-ITS refit: see arXiv:1709.00618)

Full TPC tracking
- cluster to track residuals = better entopy coding
(needs track refit in distorted coordinates: see TODO)
- removal of tracks not used for physics

— Full reconstruction with final calibration }\

This means:

Second tracking pass with final calibration

* Full TPC online tracking @50 kHz Pb-Pb

* Reduced ITS + TRD online tracking (ITS standalone tracking, matching to TPC, extrapolation to TRD)

* Reprocessing of all detectors when no beam (including full ITS + TRD tracking)

- Full online TPC tracking defines peak compute load, ITS + TRD must be fast enough at reduced statistics.
- Developing new track reconstruction derived from ALICE Run 2 HLT TPC tracking, heavy usage of GPUs.
10.7.2018 David Rohr, drohr@cern.ch
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The tracking challenge

« Tracking continuous data... +  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.

*  Other detectors know the (rough) time of the collision.
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The tracking challenge

« Tracking continuous data... +  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.
*  Other detectors know the (rough) time of the collision.
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The tracking challenge

« Tracking continuous data... +  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.

*  Other detectors know the (rough) time of the collision.
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The tracking challenge

« Tracking continuous data... +  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.

*  Other detectors know the (rough) time of the collision.
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The tracking challenge

« Tracking continuous data... +  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.
*  Other detectors know the (rough) time of the collision.
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& The tracking challenge

Tracking continuous data...

The TPC sees multiple overlapped collisions (shifted in time).

Other detectors know the (rough) time of the collision.
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X (radial direction)
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Problem: TPC clusters have no defined z-position but
only atime. They can be shifted in z arbitrarily.
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The tracking challenge

AN

« Tracking continuous data... «  Problem: TPC clusters have no defined z-position but
The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.

Other detectors know the (rough) time of the collision.
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Tracking continuous data...
*+ The TPC sees multiple overlapped collisions (shifted in time).
*  Other detectors know the (rough) time of the collision.
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Problem: TPC clusters have no defined z-position but
only atime. They can be shifted in z arbitrarily.

GEM amplifications produces ions that deflect the
electrons during the drift. The correction of these
space-charge distortions requires the absolute z
position.
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Tracking continuous data... «  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.

«  Other detectors know the (rough) time of the collision. *  GEM amplifications produces ions that deflect the
electrons during the drift. The correction of these
space-charge distortions requires the absolute z
position.
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& The tracking challenge — How the tracking will work

Tracking continuous data...
The TPC sees multiple overlapped collisions (shifted in time).
Other detectors know the (rough) time of the collision.

+‘ + + '-é/\g
AR |
A Flz
n: g
1 e BhT
i e s
i N ¥ )
ﬁgﬁ!
=

10.7.2018

P
<
4

(beam and TPC drift direction)

David Rohr, drohr@cern.ch

Problem: TPC clusters have no defined z-position but
only atime. They can be shifted in z arbitrarily.

GEM amplifications produces ions that deflect the
electrons during the drift. The correction of these
space-charge distortions requires the absolute z
position.

Standalone ITS tracking.
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The tracking challenge — How the tracking will work

Tracking continuous data... «  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.
«  Other detectors know the (rough) time of the collision. *  GEM amplifications produces ions that deflect the
i, = electrons during the drift. The correction of these
+ + + 543 et aeRE
‘ ‘ ) 2| s space-charge distortions requires the absolute z
+ +* T 8 position.
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The tracking challenge — How the tracking will work

Tracking continuous data...

*+ The TPC sees multiple overlapped collisions (shifted in time).
*  Other detectors know the (rough) time of the collision.
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X (radial direction)
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Number of tracks

10*

10°

102

Problem: TPC clusters have no defined z-position but
only atime. They can be shifted in z arbitrarily.

GEM amplifications produces ions that deflect the
electrons during the drift. The correction of these
space-charge distortions requires the absolute z
position.

Standalone ITS tracking.
Standalone TPC tracking, scaling t linearly to an arbitrary z.
Extrapolate to x = 0, define z = 0 as if the track was primary.

Distributibn of estimgated collision time in:
_.the TE assuming the track was primary.:

——F———
200 400 600 800 1000
Time within TF, pus
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The tracking challenge — How the tracking will work

Tracking continuous data... «  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.
«  Other detectors know the (rough) time of the collision. *  GEM amplifications produces ions that deflect the
Lt electrons during the drift. The correction of these
+ ‘ + + E S space-charge distortions requires the absolute z
+ +* T 8 position.
‘f‘, -+ al|5
o p——
+ + Els |
T Standalone ITS tracking.
e ® Standalone TPC tracking, scaling t linearly to an arbitrary z.

TPC

B+
. Extrapolate to x = 0, define z = 0 as if the track was primary.
. Track following to find missing clusters. For cluster error
parameterization, distortions, and B-field, shift the track such
thatz =0 atx = 0.
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The tracking challenge — How the tracking will work

Tracking continuous data... «  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.
«  Other detectors know the (rough) time of the collision. *  GEM amplifications produces ions that deflect the
TN electrons during the drift. The correction of these
+ ‘ + + E space-charge distortions requires the absolute z

‘t‘:’»‘t‘» "; position.
e

TRD

. Standalone ITS tracking.

X (radial direction)

. Standalone TPC tracking, scaling t linearly to an arbitrary z.

. Extrapolate to x = 0, define z = 0 as if the track was primary.
. Track following to find missing clusters. For cluster error
parameterization, distortions, and B-field, shift the track such
thatz =0 atx = 0.
. Refine z = 0 estimate, refit track with best precision
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The tracking challenge — How the tracking will work

Tracking continuous data... «  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.
«  Other detectors know the (rough) time of the collision. *  GEM amplifications produces ions that deflect the
Lt electrons during the drift. The correction of these
E _5 space-charge distortions requires the absolute z
3 position.
Q| ©
W
[ ;
T Standalone ITS tracking.
e ® Standalone TPC tracking, scaling t linearly to an arbitrary z.
M . Extrapolate to x = 0, define z = 0 as if the track was primary.
. Track following to find missing clusters. For cluster error
E_) parameterization, distortions, and B-field, shift the track such
= thatz =0 atx = 0.
. Refine z = 0 estimate, refit track with best precision
—> . For the tracks seen in one ITS read out frame, select all TPC
time h i, 2 .
e events with a matching time (from z = 0 estimate).
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> it directi =0 z=0
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& The tracking challenge — How the tracking will work

Tracking continuous data... «  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.
«  Other detectors know the (rough) time of the collision. *  GEM amplifications produces ions that deflect the
Lt electrons during the drift. The correction of these
+ ‘ + + E & space-charge distortions requires the absolute z
+ +* T 8 position.
+ 5+ * o| &
o p——
+ + Els |
t e + 3= Standalone ITS tracking.
! ! e ® Standalone TPC tracking, scaling t linearly to an arbitrary z.

. Extrapolate to x = 0, define z = 0 as if the track was primary.
. Track following to find missing clusters. For cluster error

E_) parameterization, distortions, and B-field, shift the track such

= thatz =0 atx = 0.
. Refine z = 0 estimate, refit track with best precision

\\\\ e > . For the tracks seen in one ITS read out frame, select all TPC
M;me events with a matching time (from z = 0 estimate).
v $\ * C Match TPC track to ITS track, fixing the time and thus the z
QV\A? = position of the TPC track.
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& The tracking challenge — How the tracking will work

Tracking continuous data...

The TPC sees multiple overlapped collisions (shifted in time).
Other detectors know the (rough) time of the collision.

10.7.2018
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Problem: TPC clusters have no defined z-position but
only atime. They can be shifted in z arbitrarily.

GEM amplifications produces ions that deflect the
electrons during the drift. The correction of these
space-charge distortions requires the absolute z
position.

Standalone ITS tracking.
Standalone TPC tracking, scaling t linearly to an arbitrary z.
Extrapolate to x = 0, define z = 0 as if the track was primary.

Track following to find missing clusters. For cluster error
parameterization, distortions, and B-field, shift the track such
thatz =0 atx = 0.

Refine z = 0 estimate, refit track with best precision

For the tracks seen in one ITS read out frame, select all TPC
events with a matching time (from z = 0 estimate).

Match TPC track to ITS track, fixing the time and thus the z
position of the TPC track.

Refit ITS + TPC track outwards.
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The tracking challenge — How the tracking will work

Tracking continuous data...

The TPC sees multiple overlapped collisions (shifted in time).
Other detectors know the (rough) time of the collision.

10.7.2018
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Problem: TPC clusters have no defined z-position but
only atime. They can be shifted in z arbitrarily.

GEM amplifications produces ions that deflect the
electrons during the drift. The correction of these
space-charge distortions requires the absolute z
position.

Standalone ITS tracking.
Standalone TPC tracking, scaling t linearly to an arbitrary z.
Extrapolate to x = 0, define z = 0 as if the track was primary.

Track following to find missing clusters. For cluster error
parameterization, distortions, and B-field, shift the track such
thatz =0 atx = 0.

Refine z = 0 estimate, refit track with best precision

For the tracks seen in one ITS read out frame, select all TPC
events with a matching time (from z = 0 estimate).

Match TPC track to ITS track, fixing the time and thus the z
position of the TPC track.

Refit ITS + TPC track outwards.
Prolong into TRD / TOF.
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The tracking challenge — How the tracking will work

« Tracking continuous data... «  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.
«  Other detectors know the (rough) time of the collision. *  GEM amplifications produces ions that deflect the
Lt electrons during the drift. The correction of these
*‘ * * E S space-charge distortions requires the absolute z
3 position.
Q| ©
W
[ ;
T Standalone ITS tracking.
\ e ® Standalone TPC tracking, scaling t linearly to an arbitrary z.
Complications: I +  Extrapolate to x = 0, define z = 0 as if the track was primary.
. There can be 2 collisions in one ITS read 2 . Track following to find missing clusters. For cluster error
arameterization, distortions, and B-field, shift the track such
out frame. = P 2
thatz =0 atx = 0.
: The approach QOes not work well for . Refine z = 0 estimate, refit track with best precision
deep secondaries: ‘\‘\‘\ : > +  Forthe tracks seen in one ITS read out frame, select all TPC
* Constrained by the TPC volume, or L events with a matching time (from z = 0 estimate).
could be matched to remaining ITS * . Match TPC track to ITS track, fixing the time and thus the z
or TRD space points = position of the TPC track.
' . Refit ITS + TPC track outwards.

< . Prolong into TRD / TOF.
z (beam and TPC drift direction)
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¢ ALICE TPC Tracking Status

« ALICE TPC tracking for O? developed.

* Derived from Run 2 HLT tracking (See https://indico.physics.lbl.gov/indico/event/149/contributions/222/attachments/216/230/berkeley-tracker.pdf).
— Can track 40.000.000 tracks / second in the ALICE HLT.

» Based on Cellular Automaton and Kalman Filter.

* Uses GPU-acceleration to meet compute constraints.
— Generic source code that run on CPU (with OpenMP) and GPU (CUDA and OpenCL)
— Identical results from GPU and CPU version.

* Adapted for ALICE O2 software, available in standard software installation since 2018.
— Improved efficiency and resolution compared to Run 2 in order to match offline quality.
— Added low-p; tracking to enable cluster rejection needed for Run 3 data reduction.

e TODO: Make slide nice!
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Tracking efficiency (Run 2, O?/HLT v.s. Offline — Pb-Pb)

 New HLT / O2 tracking shows
comparable efficiency to
Run 2 offline tracking.

* In certain situations the new
tracking is already superior
thanks to tuning for Run 3
conditions.

- All plots are Monte Carlo.

- All plots are TPC only.

- Resolutions at inner end of TPC.
- Findable tracks: min 70 TPC hits.
- Others: min 1 TPC hit.

- Other offline features (dE/dX, ...) disabled.®

- Same calibration for offline / HLT.

- Same cluster error parameterization.

Efficiency (Primary Tracks)

(Efficiency)

—

Efficiency (Secondary Tracks)

(Efficiency)

HLT features good low-py efficiency after
tuning for looper identification.
Many loopers due to incomplete merging.
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Practically zero fake
rate for both trackers

(See backup for proton-proton plot.)
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All findable primaries
reconstructed by HLT and Offline
ALICE Performance 2018/03/20
2015, MC Pb-Pb, |fs,, = 5.02 TeV
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Track resolution (Run 2, Pb-Pb, with space-charge distortions)

; : Y Resolution Z Resolution @ Resolution
Small differences with T S & T —— e~ Fesatufion
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¢ Track fit / finding stability

* Various benchmarks ensure same results in O2 scenario as during Run 2:

* z-independent tracking: Take “normal” Run 2 event, forget about absolute z an process like O2 time frame:
— Identical efficiency, negligible resolution decrease for secondaries.

* In bunch pile up: n =100 to 1000 in proton-proton:

— No change up to p = 300, minor efficiency decrease for secondaries above p = 300, tracking still working at u = 1000 at reduced efficiency.
Efficiency (Primary Tracks) Efficiency (Secondary Tracks)

— No effect on resolution.
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(Efficiency)
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©

T
(Efficiency)

——— Single Event - Efficiency
o
TF 10 kHz - Efficiency
B L ——— TF10kHz - Clone Rate

; - = Identical £ . P il
« TPC occupancy: Single event to 50 kHz time frame Pb-Pb: > 7 efficiency S ' -
(see figure on the right) C 3 E : TH“C,;;:H%
— Resolution identical.
— Small efficiency decrease below 150 MeV/c.

—  Clone rate of short low-p tracks increases with occupancy.

* Length of time frame (100 pus to 20 ms): :
— No difference (with fix for limited single precision float accuracy). 0sf

F T~ Small decrease

(See backup for respective figures)

10.7.2018

(Efficiency)

below 150 MeV/c

ALICE Performance 2018/03/20
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& Track fit / finding stability

* Various benchmarks ensure same results in O2 scenario as during Run 2:

* z-independent tracking: Take “normal” Run 2 event, forget about absolute z an process like O2 time frame:
— Identical efficiency, negligible resolution decrease for secondaries.

* In bunch pile up: n =100 to 1000 in proton-proton:

— No change up to p = 300, minor efficiency decrease for secondaries above p = 300, tracking still working at u = 1000 at reduced efficiency.
Efficiency (Primary Tracks)

— No effect on resolution.

* Length of time frame (100 pus to 20 ms):

Efficiency (Secondary Tracks)

(Efficiency)

(Efficiency)

1=

————— ey,
=D ﬁ#“-ﬂﬁ

——— Single Event - Efficiency
— Single Event - Clone Rate
Single Event - Fake Rate

— No difference (with fix for limited single precision float accuracy). U.af— TF 10 bt - Eicancy
- . ey identical 5 = e
« TPC occupancy: Single event to 50 kHz time frame Pb-Pb: > 7 efficiency ' ;::::z:;c'wf::?
(see figure on the right) - ] 5 ey
— Resolution identical. -—%ﬂﬁi
= Small efficiencyvy decreace holow 150 MeV//c meEgevsc)
Efficiency (Secondary Tracks, Findable)
Good efficiency for low-p; looping secondaries. 2~ small decrease 2 *"‘**ﬁ
& 08— b
- Absolutely crucial for rejecting tracks not used for D e et - i
. 06— N i 06 = | d
thSICS. o 2015, MG Pb-Pb, {5, = 5.02 TeV i = CTgr:eeafaete
= 0.4 =

(See |

« High clone rate due to incomplete implementation
of low-p; merging.
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& Tracking time

Speed-up normalized to
single core.

. Red curve: exactly the speed-up.

. Other curves: corrected for
required CPU resources.

— How many cores does
the GPU replace.

»  Significant (>20x) speed-

up compared to offline.
A modern GPU replaces

about 40 cores @4.2 GHz.

»  Significant gain with
new GPU models.

« One GPU replaces
>800 CPU cores running

Run 2 Offline tracking.
(at same efficiency / resolution)f

10.7.2018

Speedup (normalized to a single core)

40 1

35 |

25 |
20 |
15 |

10 [

ol

30 |

5

ALICE Performance 2018/03/20
2015, Pb-Pb, VSyn = 5.02 TeV

HLT GPU Tracking v.s. HLT CPU Tracking (AMD S9000 v.s. Xeon 2697, 2.7 GHz)
HLT GPU Tracking v.s. HLT CPU Tracking (NVIDIA GTX 1080 v.s. i7 6700K, 4.2 GHz) i
HLT CPUITracking V.S. Ofﬂiqe Tracking (Xeon I2697, 2.7 GHz) T

=

500000 1x106

David Rohr, drohr@cern.ch

1.5x10° 2x10°

Number of TPC clusters
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& TPC Data Compression

N
|

« TPC Data compression involves 3 steps:
1. Entropy reduction (Track model, logarithmic precision, etc.)
2. Entropy encoding
3. Removal of tracks not used for physics.

(=]

—

ALICE Performance 2018/05/16
2018, pp, Vs =13 TeV

HLT TPC Compression Factor

*+ Steps 1 + 2 implemented for Run 2.
*  Current compression factor 8.3x. .
*  Prototype for Run 3 achieves factor 9.1x.

Average compression ratio: 8.34x

» Missing factor ~2 to reach total reduction factor 20x for Run 3. s TR | M 0 Pl LA N T
100 200 300 400 500 600 700 800

Number of TPC Clusters

o
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«  TPC Data compression involves 3 steps: Unassigned clusters
. e i, Reconstructed Tracks
1. Entropy reduction (Track model, logarithmic precision, etc.) . N Clusters
2. Entropy encoding
3. Removal of tracks not used for physics. '

*+ Steps 1 + 2 implemented for Run 2.
*  Current compression factor 8.3x.
*  Prototype for Run 3 achieves factor 9.1x.

re

- Missing factor ~2 to reach total reduction factor 20x for Run 3; J i
«  Remove non-physics tracks < 50 MeV. : "
* Remove additional legs of looping tracks.

* Remove track segments with high
inclination angle.

« TODO: Better event display! =7

10.7.2018 David Rohr, drohr@cern.ch
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. Cluster removal for 02

e

PN S
W
7 AN

* Integrated plot:

*  Purple: all clusters Clusters Pt Distribution / Attachment (integrated)
* Red: clusters attached to the correct

track. [ — e
«  Green: clusters attached to wrong e s

track.

0.8—

16% of hits belong to < 10
MeV/c = Hough transform.

*  Blue: All clusters (if attached or not)
of a reconstructed track.

e TODO: Outdated plot, update, add text.

bt

35% of hits belong to
reconstructed tracks < 200 MeV/c

Fraction of TPC clusters (integrated)

ALICE Performance 2018/03/20
2015, MC Pb-Pb, VSN =5.02 TeV

n Practically 0% fake
L attachment.

0 1 1 1 1 11 11 i 1 1 1 1 11 11 ] 1 1 1 1 11 11 i

1072 107" 1 10

P, (GeV/e)

mc
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&  Global Tracking (TPC + ITS + TRD)

(R. Shahoyan, M. Puccio, O. Schmidt)

TPC-TRD Prolongation TRD developed within HLT framework. ‘CE‘; 0915 i ‘v R E _ N - 7
* Good efficiency so far, comparable to offline. é‘ o_ag—ﬁ .. gk = _
+  Online version uses only TRD tracklets. 3 E = A 3
«  Decrease for low-p; due to absence of TRD hits in Run 3. g Z;f- TPC — TRD prolongation efficienty -
* Reduced purity in Pb-Pb due to large amount of TRD fake tracklets. E Py e TR ]
. See: TODO 0.52— MG PbPb, |s,,, = 5.02 TeV é

0'4:_ a4 offline efficiency |
oaf = HLT efficiency =
é v HLT purity g
Status of TRD and ITS tracking: o ‘ |
* GPU-accelerated ITS standalone tracking under development. 3
(first version available) 5
« TPCto ITS track matching available (comparable purity as in Run 2). g : - :
* See poster of M. Concas! AR TR T N
E 06 §—+_$_'_ iPC = ITSmatchm :ur'it“"'é :
Next steps: gl T N gp e
+ Work on combined TPC + ITS + TRD tracking and fit on GPU DR o
without intermediate data transfer. m% - :Z il I:x G .
«  Test TPC calibration procedure using TPC + ITS + TRD tracking. el ——
107! 1 P,

10.7.2018 David Rohr, drohr@cern.ch
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¢ Track resolution (Run 2, Pb-Pb, no space-charge distortions)

HLT / Offline resolution
practically identical
(no space-charge distortions).

Improvements in HLT tracking:
*  Propagation using polynomial

approximation of 3D B-field.

*  Ouitlier cluster rejection

during refit.

* Improved cluster error

parameterization, depending
on flags set by clusterizer.
(edge, deconvoluted, ...)

+  3-way fit.

(inward, outward, inward)

10.7.2018

y-y__ (mm) (Resolution)

A-R . (mrad) (Resolution)

Y Resolution Z Resolution @ Resolution
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(Efficlency)

(Efiiciency)

Tracking efficiency / resolution (Run 2, HLT v.s. Offline — pp)

* For reference (same situation for pp).
. Identical resolution.
+  Same efficiency for primaries.
»  Better efficiency for secondaries / low p.

Efficiency (Primary Tracks) Efficiency (Secondary Tracks) Y Resolution Z Resolution @ Resolution
1= = = ® F =1 = = = —— Offline -
[ o e e e o] @ N e B AR s + s T
L = § r = ¥ #§++**+ E E W‘ 2 0-7'* ++t~ = T HLT- Resolution
e = I = R T 2 Al 5 e ——— HLT-Mean
o @ i @ + = T 4
0.8— L o8- - (| £ osf Ry &
B L —— OAive - ERdeney 2 e b= —, =
r i —— Offline - Clone Rate E [ s £ 0sf el g
- +_H. 4+ Offline - Fake Rate e N =4 Poas E 3
- 06 t s — HLT - Efficioncy JEosf = a2 e )
L — HLT - Clone Rate £ e L Z
: : + +‘\“:""' ey -~ HLT - Fake Rate r '-m 2
oa- 47 o, o+ 02f o (i) =
N - [ e
L -~ - [ 0.2f
e Z - 01 a
2fF } - - ; ! |
o aas - - 3 i, o+ ]
L L - T + 4 ‘\' OF Hy, eommmemrem e ot e oF %M + +1* Ced
0-.714———;—1-=r—|—r-==--=—‘"‘—-'¢".—.—ﬁ1———— ] S e e s e o e = el 'H'i "%‘+#+ _}t{:‘ 1 1 J(
10" 1 10" 1 0’ 1 10 107 1
(GeV‘c] oo [GeV'c) . (Gevic) b (Gew ]
Efficiency (Primary Tracks, Findable) Efficiency (Secondary Tracks, Findable) % Resolution Relative Py Resolution
—_————————— = = 3 = = T B
i g T TR g ET, £ f E
2 o i g 5 sE *
0.8] Y pal- +-*-*"' - = L) =l E b
i s T 7. E 2 g aF *
% ALICE Performance 2018/03/20 o5 H++++ E 2°E ALICE Performance 2018/03/20 B £
E = o aF =
2015, MC pp, 5 = 5.02 TeV . + J[ t £ 2F - 2015, MC pp, {5 = 5.02 TV e =
r “‘*""+ ~ F = - -
L 155 2 & E =
0.4 ~ 0.4f— + E = C2F 0
—+ S 1= = £ |e -
+ E —_— = E +=_ =
**1—4—*+ i3 + . ad —— = - B
0.2 -+ 02— ++ . E T E
- £ - + J( o pree———— PN e
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i Tracking time frames at different interaction rates

B
*  Simulation uses correct bunch structure as expected for Run 3 Pb-Pb(from ALICE TPC upgrade TDR).
« Practically no deterioration of resolution, even at 50 kHz.
*  Minor efficiency decrease below 150 MeV/c.
«  Still, fake rate increases with interaction rate (in particular for low p;) — Should improve with better merging.
Efficiency (Primary Tracks) Efficiency (Secondary Tracks) Y Resolution Z Resolution <@ Resolution
g B= i g mmm——— T, g ref g 5 2 e
== LT I 2 z =t
| - o ' W=
i = Binglo Event - EFiciency = M_H'tz S | 82 < T ek M
r Single Event - Clone Rate E {2k E i ! § 25| -f TF 50 kMiz - Resolution
r Single Event - Fake Rate S e E y = TF 50 ktiz - Mean
06— TF 10 kHz - Efficiency o 2 P 2 0.8~ S E ook
C TF 10 kHz - Clone Rate > = n e, 6& q‘k
£= Identical T ok Eiheioney > 08 . .o Y oosk B || sl
[ C. TF 30 kHz - Clone Rate 08k . g n
£ efficiency TF 30 kic - Fako Rate et a4l 10F 2
__ TF 50 kH::ﬁOmMmﬁtﬂyN 04p 5f= ..-_..
E TF 50 kHz - Fake Rate ozf o2f 1 T
_ 3 ?.,.,}_.I.'} OFf- __¢.Aq—e~rln .............. ‘LL‘IV' O}_i.'-i""* : R 5 v & D_Il_ﬂh_.l .............. I‘
53 ! DT:: (Gevic) [ ?gEV"C) W i P (G?I/c) oy | [ (G%f‘c) [ ] B {GL\QI» c)
Efficiency (Primary Tracks, Findable) Efficiency (Secondary Tracks, Findable) A Resolution Relative [ Resolution
T B L) s 1F *4‘&# z 1 g 3
g§ [ & [ E 5 12
: F =~ Small decrease :LE Jf : 'Zﬁic 2 i -
= 0 below 150 MeV/c = R £ wofTH = ‘0_% :
08 L ALICE Performance 2018/03/20 E ':4 E 8:— i; ALICE Performance 2018/03/20 éé 8 i—-} &
o 2015, MC Pb-Pb, {5, = 5.02 TeV “F Increased = F . 2015, MC Pb-Pb, |5, = 5.02 TeV = B i g
E E - clone rate I F - = F He -
oA o — Identical & 45 i
ool - £ | _resolution R b
i- 0 .;_. e S T 0:_‘7.4- [ G D
o= -|-+ L 1 1 E L 1 | e
i % ! p. ;(%a\l/c) L ? pm:(%ewc)
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(Efficiency)

(Efliciency)

Multiplicity / event pile-up (pp)

*  Overlaying up to u =100 pp TPC events (in-bunch pile-up) has absolutely no impact on efficiency, minimal impact on fake rate.
* At 300 overlaid pp events, one starts to see a small deterioration in the efficiency below 120 MeV/c.

» Above (at p = 1000), there is a significant effect, but the tracking still works.

» Pile-up has does not affect resolution at all.

Efficiency (Primary Tracks) Efficiency (Secondary Tracks) Y Resolution Z Resolution <@ Resolution
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Normal tracking / z-independent tracking

In continuous tracking, the absolute z-position of the track is not known, but estimated from the assumption that the track is
primarily pointing towards the origin (B-field and cluster errors are computed under this assumption).

Naturally, secondary tracks suffer a bit, while primaries are mostly unaffected.

No significant difference between Run 2 tracking and z-independent Run 3 tracking.

Due to slightly larger errors, more tracks are merged.

(Efficiency )}

(Elficiency)

=}
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. Length of time frame

B
* Identical result independent of length of time frame.
» Before, efficiency / resolution decreased with long time frames.
. Completely fixed.
. Floating point problems avoided by z-independent tracking (track fit happens in |z| < 250 cm).
. Fixed precision for storing clusters (16 bits as used in the HLT insufficient for full TF).
. Some other minor problems solved.
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