



# **GPU-based Online Track Reconstruction in LHC Run 3 for the ALICE TPC with Continous Read Out**

David Rohr for the ALICE Collaboration drohr@cern.ch, CERN

CHEP 2018

10.7.2018





# Run 2: O(1) kHz single events...

• What data will we see with the ALICE Upgrade...?





# Run 2: O(1) kHz single events...





# Run 2: O(1) kHz single events...



# Run 2: O(1) kHz single events -> Run 3: 50 kHz continuous data



# Run 2: O(1) kHz single events → Run 3: 50 kHz continuous data

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.
- Timeframe of 2 ms.
- Tracks of different collisions shown in different color.
- What are the challenges:
  - Reconstruct 50x more events online.
  - Store 50x more events (Needs TPC compression factor 20x compared to Run 2 raw data size).
  - Reconstruct TPC data in continuous read out.
  - Cope with space charge distortions in the TPC.
- Scope of this talk:
  - Track reconstruction in the TPC (and related) for O<sup>2</sup>.
     (ALICE Online Offline Computing Upgrade)

Lead-Lead



# **Tracking in ALICE in Run 3**

- ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)
  - 7 layers ITS (Inner Tracking System Silicon Tracker)
  - 152 pad rows TPC (Time Projection Chamber)
  - 6 layers TRD (Transition Radiation Detector)
  - 1 layer TOF (Time Of Flight Detector)



## **Tracking in ALICE in Run 3**



## **Tracking in ALICE in Run 3**

- ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)
  - 7 layers ITS (Inner Tracking System silicon tracker)
  - 152 pad rows TPC (Time Projection Chamber)
  - 6 layers TRD (Transition Radiation Detector)
  - 1 layer TOF (Time Of Flight Detector)
- Two reconstruction phases in Run 3:
  - Synchronous reconstruction (during data taking):
    - Calibration
    - Data compression
  - Asynchronous reconstruction (when no beam):
    - Full reconstruction with final calibration

#### This means:

- Full TPC online tracking @50 kHz Pb-Pb
- Reduced ITS + TRD online tracking (ITS standalone tracking, matching to TPC, extrapolation to TRD)
- Reprocessing of all detectors when no beam (including full ITS + TRD tracking)
- → Full online TPC tracking defines peak compute load, ITS + TRD must be fast enough at reduced statistics.
- → Developing new track reconstruction derived from ALICE Run 2 HLT TPC tracking, heavy usage of GPUs.

#### Partial ITS + TPC + TRD tracking

reduced statistics sufficient
 (calibration based on matching of TPC / ITS / TRD tracks and TPC residuals v.s. TRD-ITS refit: see arXiv:1709.00618)

#### **Full TPC tracking**

- cluster to track residuals → better entopy coding (needs track refit in distorted coordinates: see TODO)
- removal of tracks not used for physics

Second tracking pass with final calibration

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.

z (beam and TPC drift direction)

x (radial direction) TRD **End Plate** TPC **Drift** 



- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.





- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.

x (radial direction) TRD **End Plate** TPC **Drift** z (beam and TPC drift direction)



- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.





- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.





- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- $z \sim t t_{\text{Vertex}}$
- → Need to identify the primary vertex, before assigning final z to cluster.

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.

#### Tracking continuous data...

- The TPC sees multiple overlapped collisions (shifted in time).
- Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
  - Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.



- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
  - Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
  - Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
  - Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
  - Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).
- Match TPC track to ITS track, fixing the time and thus the z position of the TPC track.

#### Tracking continuous data...

- The TPC sees multiple overlapped collisions (shifted in time).
- Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
  - Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).
- Match TPC track to ITS track, fixing the time and thus the z position of the TPC track.
- Refit ITS + TPC track outwards.

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
  - Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).
- Match TPC track to ITS track, fixing the time and thus the z position of the TPC track.
- Refit ITS + TPC track outwards.
- Prolong into TRD / TOF.

- Tracking continuous data...
  - The TPC sees multiple overlapped collisions (shifted in time).
  - Other detectors know the (rough) time of the collision.



- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
  - Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).
- Match TPC track to ITS track, fixing the time and thus the z position of the TPC track.
- Refit ITS + TPC track outwards.
- Prolong into TRD / TOF.

#### **ALICE TPC Tracking Status**

- ALICE TPC tracking for O<sup>2</sup> developed.
  - Derived from Run 2 HLT tracking (See https://indico.physics.lbl.gov/indico/event/149/contributions/222/attachments/216/230/berkeley-tracker.pdf).
    - Can track 40.000.000 tracks / second in the ALICE HLT.
  - Based on Cellular Automaton and Kalman Filter.
  - Uses GPU-acceleration to meet compute constraints.
    - Generic source code that run on CPU (with OpenMP) and GPU (CUDA and OpenCL)
    - Identical results from GPU and CPU version.
  - Adapted for ALICE O<sup>2</sup> software, available in standard software installation since 2018.
    - Improved efficiency and resolution compared to Run 2 in order to match offline quality.
    - Added low-p<sub>T</sub> tracking to enable cluster rejection needed for Run 3 data reduction.

TODO: Make slide nice!

# Tracking efficiency (Run 2, O<sup>2</sup>/HLT v.s. Offline – Pb-Pb)

- New HLT / O<sup>2</sup> tracking shows comparable efficiency to Run 2 offline tracking.
- In certain situations the new tracking is already superior thanks to tuning for Run 3 conditions.
- All plots are Monte Carlo.
- All plots are TPC only.
- Resolutions at inner end of TPC.
- Findable tracks: min 70 TPC hits.
- Others: min 1 TPC hit.
- Other offline features (dE/dx, ...) disabled.0.6
- Same calibration for offline / HLT.
- Same cluster error parameterization.

Practically zero fake rate for both trackers
(See backup for proton-proton plot.)



## Track resolution (Run 2, Pb-Pb, with space-charge distortions)

- Small differences with space-charge distortions.
- Similar structure in y-resolution.
- HLT/O² has not been tuned for distortions so far.
- Only using systematic cluster error parameterization obtained from offline distortion map residuals.

(See poster of S. Gorbunov.) (See backup for without distortions.)



## Track fit / finding stability

- Various benchmarks ensure same results in O2 scenario as during Run 2:
  - z-independent tracking: Take "normal" Run 2 event, forget about absolute z an process like O2 time frame:
    - Identical efficiency, negligible resolution decrease for secondaries.
  - In bunch pile up:  $\mu = 100$  to 1000 in proton-proton:
    - No change up to μ = 300, minor efficiency decrease for secondaries above μ = 300, tracking still working at μ = 1000 at reduced efficiency.
       Efficiency (Primary Tracks)
    - No effect on resolution.
  - Length of time frame (100 μs to 20 ms):
    - No difference (with fix for limited single precision float accuracy).
  - TPC occupancy: Single event to 50 kHz time frame Pb-Pb: (see figure on the right)
    - Resolution identical.
    - Small efficiency decrease below 150 MeV/c.
    - Clone rate of short low-p<sub>T</sub> tracks increases with occupancy.

Identical efficiency (GeV/c) Efficiency (Primary Tracks, Findable) Efficiency (Secondary Tracks, Findable) Small decrease below 150 MeV/c ALICE Performance 2018/03/20 Increased 2015, MC Pb-Pb, √s<sub>NN</sub> = 5.02 TeV clone rate p\_Tec (GeV/c)

(See backup for respective figures)

## Track fit / finding stability

- Various benchmarks ensure same results in O2 scenario as during Run 2:
  - z-independent tracking: Take "normal" Run 2 event, forget about absolute z an process like O2 time frame:
    - Identical efficiency, negligible resolution decrease for secondaries.
  - In bunch pile up:  $\mu = 100$  to 1000 in proton-proton:
    - No change up to μ = 300, minor efficiency decrease for secondaries above μ = 300, tracking still working at μ = 1000 at reduced efficiency.
       Efficiency (Primary Tracks)
    - No effect on resolution.
  - Length of time frame (100 μs to 20 ms):
    - No difference (with fix for limited single precision float accuracy).
  - TPC occupancy: Single event to 50 kHz time frame Pb-Pb: (see figure on the right)
    - Resolution identical.

Small efficiency decrease below 150 MeV/c

#### Good efficiency for low- $p_T$ looping secondaries.

- Absolutely crucial for rejecting tracks not used for physics.
- High clone rate due to incomplete implementation of low-p<sub>T</sub> merging.



(See

# **Tracking time**



## **TPC Data Compression**

- TPC Data compression involves 3 steps:
  - 1. Entropy reduction (Track model, logarithmic precision, etc.)
  - 2. Entropy encoding
  - 3. Removal of tracks not used for physics.
- Steps 1 + 2 implemented for Run 2.
  - Current compression factor 8.3x.
  - Prototype for Run 3 achieves factor 9.1x.
- Missing factor ~2 to reach total reduction factor 20x for Run 3.



#### **TPC Data Compression**



#### Cluster removal for O<sup>2</sup>

- Integrated plot:
  - Purple: all clusters
  - Red: clusters attached to the correct track.
  - Green: clusters attached to wrong track.
  - Blue: All clusters (if attached or not) of a reconstructed track.
  - TODO: Outdated plot, update, add text.



# Global Tracking (TPC + ITS + TRD)

#### (R. Shahoyan, M. Puccio, O. Schmidt)

- TPC-TRD Prolongation TRD developed within HLT framework.
  - Good efficiency so far, comparable to offline.
  - Online version uses only TRD tracklets.
  - Decrease for low- $p_T$  due to absence of TRD hits in Run 3.
  - Reduced purity in Pb-Pb due to large amount of TRD fake tracklets.
  - See: TODO

#### Status of TRD and ITS tracking:

- GPU-accelerated ITS standalone tracking under development. (first version available)
- TPC to ITS track matching available (comparable purity as in Run 2).
- See poster of M. Concas!

#### Next steps:

- Work on combined TPC + ITS + TRD tracking and fit on GPU without intermediate data transfer.
- Test TPC calibration procedure using TPC + ITS + TRD tracking.





# Summary

TODO



#### Track resolution (Run 2, Pb-Pb, no space-charge distortions)

- HLT / Offline resolution practically identical (no space-charge distortions).
- Improvements in HLT tracking:
  - Propagation using polynomial approximation of 3D B-field.
  - Outlier cluster rejection during refit.
  - Improved cluster error parameterization, depending on flags set by clusterizer. (edge, deconvoluted, ...)
  - 3-way fit. (inward, outward, inward)



# Tracking efficiency / resolution (Run 2, HLT v.s. Offline - pp)

- For reference (same situation for pp).
  - Identical resolution.
  - Same efficiency for primaries.
  - Better efficiency for secondaries / low  $p_T$ .



#### Tracking time frames at different interaction rates

- Simulation uses correct bunch structure as expected for Run 3 Pb-Pb(from ALICE TPC upgrade TDR).
- Practically no deterioration of resolution, even at 50 kHz.
- Minor efficiency decrease below 150 MeV/c.
- Still, fake rate increases with interaction rate (in particular for low  $p_T$ ) Should improve with better merging.



# Multiplicity / event pile-up (pp)

- Overlaying up to  $\mu = 100$  pp TPC events (in-bunch pile-up) has absolutely no impact on efficiency, minimal impact on fake rate.
- At 300 overlaid pp events, one starts to see a small deterioration in the efficiency below 120 MeV/c.
- Above (at  $\mu = 1000$ ), there is a significant effect, but the tracking still works.
- Pile-up has does not affect resolution at all.



# Normal tracking / z-independent tracking

- In continuous tracking, the absolute z-position of the track is not known, but estimated from the assumption that the track is primarily pointing towards the origin (B-field and cluster errors are computed under this assumption).
- Naturally, secondary tracks suffer a bit, while primaries are mostly unaffected.
- No significant difference between Run 2 tracking and z-independent Run 3 tracking.
  - Due to slightly larger errors, more tracks are merged.



# Length of time frame

- Identical result independent of length of time frame.
- Before, efficiency / resolution decreased with long time frames.
  - Completely fixed.
  - Floating point problems avoided by z-independent tracking (track fit happens in |z| < 250 cm).
  - Fixed precision for storing clusters (16 bits as used in the HLT insufficient for full TF).
  - · Some other minor problems solved.

