
New design of the Inner Tracking System [1]

Online reconstruction of tracks and vertices using the
Upgraded Inner Tracking System of ALICE at the LHC

Matteo Concas1,2 [mconcas@cern.ch], Maximiliano Puccio1,3 [mpuccio@cern.ch], Iacopo Colonnelli2,
Franco Dessena1,2, Stefania Bufalino1,2, Massimo Masera1,3 on behalf of the ALICE Collaboration

1Istituto Nazionale di Fisica Nucleare, 2Politecnico di Torino, 3Università degli Studi di Torino

Upgrade of the ALICE Inner Tracking System

References

• Run 3: In 2020 the upgraded Large Hadron
Collider (LHC) will increase Pb-Pb luminosity
and frequency up to 6x1027cm-2s-1 at 50kHz

• The A Large Ion Collider Experiment (ALICE)
detector will be upgraded in many of its
components, to enable the read-out of all
interactions and integrate a luminosity higher
than 10 nb−1, corresponding to about 1011
hadronic interactions.

• The Inner Tracking System (ITS) is being
replaced with a new setup constituted by
seven layers of Monolithic Active Pixel
Sensors (MAPS)

The Online-Offline (O2) project

Track reconstruction in ITS using Cellular Automata CUDA™ Implementation

OpenCL Implementation Conclusions

[1] https://cds.cern.ch/record/1625842/files/0954-3899_41_8_087002.pdf

[2] https://cds.cern.ch/record/2011297/files/ALICE-TDR-019.pdf

[3] http://www.infn.it/thesis/thesis_dettaglio.php?tid=12030

[4] https://developer.nvidia.com/about-cuda

• The ALICE Computing Model for Runs 3-4 is driven by the need to reduce the data
volume to the maximum possible extent, to minimise the computing resources
requirements needed for data processing with minimum impact on physics performance

• It is therefore very relevant to perform preliminary online reconstruction to decide
whether to keep or throw incoming data

• The new software stack will need to include both Online and Offline processing in order
to better cope with such goals. Hence, it is necessary to design and develop new and
more performant reconstruction algorithms and to implement them in a way to make it
cope with the high readout rates and the large I/O throughput

• The O2 software framework takes care to implement a distributed, parallel and staged
data processing model capable to address these requirements. Its main goal is to
perform detector calibration and data reconstruction concurrently with data taking

• It can be tailored to different configurations by the adaptation or addition of detector
specific algorithms and to specific computing systems [2]

• The O2 framework will also support the use of dedicated hardware accelerators (e.g.
Graphic Processing Units (GPUs)), the new ITS reconstruction will benefit from this

• With respect to current ITS:
• The innermost layer is closer to the interaction point: 39 mm → 22 mm
• Better pointing resolution by a factor of 3(5) in rφ (z) at pT =500 MeV/c
• Better tracking efficiency and pT resolution at low pT

Host-device paradigm: host execution, red filled, and device execution, blue filled, must
be properly synchronized

• The reconstruction in ITS is responsible to find and classify the tracks generated by
charged particles and the position of the interaction vertex

• After a preliminary vertex position estimation, needed as a seed for current tracking
algorithm implementation, the tracking phase is constituted by three macro steps:

Tracklet finding
A combinatorial routine
to find pairs of clusters
on adjacent layers,
filtering them using
some cut criteria

Cell finding
Subsequent tracklets
that satisfy some
filtering criteria are
merged into cells

Track fitting
Neighbour cells are
combined into track
candidates a fit is later
performed using a
Kalman Filter

vertex vertex vertex

• First implementation on GPU was developed using Computing Unified Device
Architecture (CUDA™) [3] and the CUB library

• Tracklet and Cell finding are the most computing time demanding operations
• Try to port these two steps on the GPU!

• Another Implementation has been developed using the OpenCL [5]

• The algorithm has been modified to avoid the sorting of the tracklet and atomic
operations
• A “dry run” of the tracklet finding algorithm is performed in order to count the total

number of tracklet reconstructed per cluster
• A second iteration of the algorithm is used to instantiate the object (tracklet or cells)

in memory already sorted for the following step

• Two different algorithms and implementation strategies have been tried for the ITS
tracker

• The tracking efficiency obtained in both implementation are consistent with each other
and with the baseline CPU tracking algorithm

• Both implementation show a great improvement in terms of computing time with respect
to the serial CPU implementation
• A new parallel CPU version is in development to have a fair comparison of the

obtained results

• Initialisation and track fitting became the new bottleneck for the reconstruction algorithm
and will be further optimised

[5] https://www.khronos.org/opencl

[6]

[7]

[8]

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU
used for this research.

• Host code is still serial: a CPU
parallelisation of such portion of the
algorithm could lead to an additional
speedup

• Creation of CPU threads and context
switch between them are costly
operations: possible parallelisation
strategies must be carefully analysed

HOST CODE

IN
P

U
T

D
A

TA

create data
structure

sync
find

tracklets find cells

count
tracklets

inclusive
sum

compute
tracklets

DEVICE CODE

count cells inclusive
sum

compute
cells

sync sync sync sync sync sync

• Boost.Compute was used to reduce
the OpenCL boilerplate code

• VexCL scan algorithm has been
used as it is faster than the
Boost.Compute version

TBD

https://developer.nvidia.com/about-cuda

