

Data Distribution and Load Balancing for the ALICE Online-Offline System

G. Nešković for the ALICE Collaboration

DRAFT: ALICE CHEP18 Rehearsals 25.06.2018

ALICE O²

Data Flow in Synchronous Processing

- Scope of the talk:
 - ► ALICE O² Data Flow during the Synchronous Processing
- Stages of the Synchronous Processing :
 - Raw Detector Data Recording
 - Local Processing
 - Global Data Aggregation and Load Balancing
 - Global Processing

TODO: Make a more suitable Figure to illustrate the data distribution process more clearly

ALICE O² Synchronous processing

Data Flow

- Heart-Beat Frame (HBF):
 - Detector data recorded in-between two HBs
 - For both contiguous and triggered readout detectors
- Sub Time Frame (STF):
 - Subset of Detector Data recorded on a single First Level Processor (FLP) node
 - Accumulated during a time period (~20ms)
 - Joined with any results of Local Processing on the FLP
 - The size highly depends on the Detector, and geographical region of the links
- ► Time Frame (TF):
 - Complete Set of all Detectors Data, recorded for the same TF interval
 - ► Size ~12 GB/TF
 - Input for the Global Synchronous Reconstruction performed for additional data reduction

9

Load Balancing Requirements

- Global Detector Readout Load Balancing (FLP domain):
 - Detector Tests and Commissioning
 - Maximize likelihood of simultaneous data recording for as many Data Links as possible
 - Coordinated by the Central Trigger Processor (CTP):
 - Fixed: Deterministically reject HBFrames (data rate throttling)
 - Automatic: Globally evaluate all recorded HBFrames and discard STFs on negative decision
- Network Traffic Shaping and Congestion Avoidance (Network domain):
 - Maintain the model of the Network Topology and FLP->EPN Links
 - Use the link utilization to schedule the TF aggregation minimizing the Network congestion
- EPN Load Balancing (EPN domain):
 - Collect available processing resources from EPNs participating in the run
 - Evenly distribute TFs to available EPNs

FLP and Intra-Node Data Transport

- Solution: Make the CRU-DMA engines stream Data to the Shared Memory Segment
- Data Block are never copied by the CPU:
 - ► No memcpy(), memmove(),...
 - Leaves CPU cycles and memory bandwidth available for the Local Processing tasks
- Multi-Process approach:
 - Provided by the ALFA Framework
 - New Shared Memory transport in FairMQ for Intra-Node communication*
 - Data flows from process to process via exchange of SHM Messages (handles)
 - Objects automatically reclaimed when not needed (e.g. when STF is transmitted)

HBFrames

Readout Buffer

-

Inter-Node Data Transport: Remote Direct Memory Access

- Extend efficient inter-node data transport onto the Network:
 - Supported by modern HPC interconnects:
 - InfiniBand
 - RoCE (requires link-level flow and congestion control for reliable operation)
 - Use network hardware to move data out of the node (RDMA)
 - Higher bandwidth and lower latencies with minimal CPU overhead
 - Avoid expensive TCP/IP stack overhead
- New FairMQ transport for RDMA*:
 - STF aggregated inside a SHM segment of EPNs
 - Suitable for Data Flow in Synchronous Processing using FairMQ SHM channels
 - ► No explicit CPU data copies, end-to-end!

Network Load-Balancing

- Network Requirements for Data Distribution:
 - DR_{FLP} = 4Tb/s FLP->EPN
 - Uneven FLP data rates
 - ► Fat-tree like network with different blocking ratios for EPN and FLP nodes
 - Support for staged deployment
- Objectives for Load-Balancing:
 - Steer data to available EPNs while avoiding network congestion
 - Simple Round-Robin EPN selection is not suitable:
 - Variable processing times
 - Unpredictable data paths through the core links
 - Solution: Maintain the Model of Network Link utilization

TF Scheduling

- TF Schedule preparation:
 - Create the Connection List for all FLP and EPN pairs:
 - Possible with source based routing of InfiniBand
 - Assign initial scores for for each segment (link bandwidth)
- TF Distribution Schedule properties:
 - ► Contains more TFs than **DataRate**_{FLPs} / **Bandwidth**_{EPN}
 - ► EPNs do not repeat
 - Keep the remaining score of core links as equal as possible (congestion avoidance)
 - Distribute TFs with the most processing resources (EPN load balancing)

FLP 1 - FLP/S1	FLP/S1 - CORE [1]	CORE-EPN/S1 [1]	EPN/S1 - EPN 1
FLP 1 - FLP/S1	FLP/S1 - CORE [1]	CORE-EPN/S1 [1]	EPN/S1 - EPN 2
FLP 1 - FLP/S1	FLP/S1 - CORE [2]	CORE-EPN/S1 [2]	EPN/S1 - EPN 3
FLP 2- FLP/S1	FLP/S1 - CORE [1]	CORE-EPN/S2 [1]	EPN/S2 - EPN9
FLP 2 - FLP/S1	FLP/S1 - CORE [1]	CORE-EPN/S2 [1]	EPN/S2 - EPN10
FLP 2 - FLP/S1	FLP/S1 - CORE [2]	CORE-EPN/S2 [2]	EPN/S2 - EPN11
FLP 3- FLP/S1	FLP/S1 - CORE [1]	CORE-EPN/S3 [1]	EPN/S3 - EPN17
FLP 3 - FLP/S1	FLP/S1 - CORE [3]	CORE-EPN/S3 [1]	EPN/S3 - EPN18
FLP 3 - FLP/S1	FLP/S1 - CORE [4]	CORE-EPN/S3 [1]	EPN/S3 - EPN19
FLP 4- FLP/S1	FLP/S1 - CORE [4]	CORE-EPN/S1 [2]	EPN/S1 - EPN 3
FLP 4 - FLP/S1	FLP/S1 - CORE [1]	CORE-EPN/S1 [1]	EPN/S1 - EPN 4
FLP 4 - FLP/S1	FLP/S1 - CORE [2]	CORE-EPN/S1 [3]	EPN/S1 - EPN 5

Summary

(2)

- ► Load Balancing:
 - Readout system: CPT-CRU control loop
 - Maximizes likelihood of global data recording
 - Discards incomplete TFs
 - ► EPN Load Balancing:
 - Evenly utilize available processing resources
 - Network:
 - Perform traffic shaping and congestion avoidance
- Data Distribution Data Flow:
 - Efficiency enabled by the new SHM and RDMA Transports in FairMQ
 - Flexible deployment with DDS on a cluster or dedicated test setups

▶ Backups

Source Based Routing

- Ability to determine the data path through the network on sender side
 - Also referred to as "path addressing"
- ► InfiniBand:
 - Subnet Manager (SM) creates optimal paths for each pair of nodes (N² number of paths)
 - ► Each HCA port can be assigned k LIDs (k=2^m), leading to the total 2^k x N² paths to choose from
- Ethernet:
 - Source based routing not supported
 - BGP-ECMP uses hash vales to select the paths (and performs load distribution when multiple equally suitable paths exist)
 - Can lead to unpredictable congestion in the network core

TimeFrame Scheduling

- Schedule contains a list of (TF,EPN) pairs:
 - Distributed to all FLPs in advance
 - Longer list avoids latency issues for reliable schedule distribution
- Each FLP performs transfers from the schedule in an unique permutation:
 - Avoid hot-spots in the network core
 - Unexpected congestion control of the underlying network fabric
 - Prevent the "in-cast" traffic patterns at the receiver
 - Investigate optimizing transfer schedules of high data rate FLPs (requires more buffer space at FLPs)

