Readout software

for the ALICE integrated Online-Offline (O2) system

Filippo Costa, Sylvain Chapeland (CERN) for the ALICE Collaboration

23nd International Conference on Computing in High Energy and Nuclear Physics, CHEP 2018

Outline

- ALICE O² project
- A word about hardware
- Readout, first link in the software chain
- Architecture and implementation
- Performance
- Summary

ALICE Online-Offline project

- ALICE detector to be upgraded
 - LHC long shutdown 2019-2020
- Increased data throughput
 - Demanding processing and compression
 - Estimated farm size:
 - Readout: ~250 nodes
 - Online reconstruction: ~1500 nodes
- See other ALICE O² talks at CHEP'18

TODO: # ids to be listed here

Detector data links

- Mainly GBT
 - radiation-hard bi-directional 4.8 Gb/s optical fiber link between counting room and experiment
- Also support for DDL
 - ALICE custom link used in run 1 & 2
 - for legacy detectors participating in run 3
- ~8000 links in total
 - => need for high-density readout system!

Readout hardware

• CRU

- Maximum 48 GBT links input
- PCle x16 board
 - FPGA: Intel Arria10
 - Dual DMA engine Gen3 x8
- Typical throughput: 110 Gb/s
- C-RORC
 - 6 DDL links input, 5.3 Gb/s each
 - Legacy device from run 1 &2

Readout software tasks

- Move the data from detector electronics into memory of PC
 - Initialize hardware: CRU, C-RORC
 - Allocate memory buffers
 - Provide data pages to be filled by PCIe device
 - Aggregate and slice data input
 - Check data consistency
 - Distribute data to consumers
 - Report performance and errors

=> A process able to readout and record data from multiple devices, with connections to monitoring, data sampling, timeframe building

Readout architecture

Readout features

- Multi-threaded application
 - 1 thread per component
 - connected by lockless 1-to-1 FIFO buffers
- Polymorphic definition of producers and consumers for easy extension
 - active components configurable at runtime
- Multiple memory types supported
 - malloc, memoryMappedFile (ROC library, based on HugeTLBFS), shmem (FMQ)
- Minimize CPU needed for readout
- Controlled polling, leaves CPU for other local tasks
- Configurable memory banks NUMA pining
- CPU deep-sleep disabled for best DMA performance (otherwise latency may increase)
- Integrated with other O2 components:
 - configuration, logging, monitoring, data sampling, transport
- Helper components
 - CRU software emulator, local file recording

Memory layout

- To be done
 - Readout prepares free data pages
 - Give them to CRU
 - Waits them back ready

• (add CRU /driver in previous slide?)

Performance

- Standard setup: 2 CRUs (i.e. 4 equipments), 26 GB/s sustained for 5 days,
 6.5GB/s per end-point, using 12% of one CPU core
- CRUv2, ASUS G3 motherboard @ aidrefflp02
- Tried with up to 8 CRUs (i.e. 16 equipments), 40 GB/s (half-duplex PCIe, no optimization)

Summary

- Readout is a versatile process
 - Initiates DMA transfert between readout cards and PC memory
 - First software component in the O2 online pipeline
 - Connected to the O2 subsystems
 - Lightweight
 - Extendable

Ready to be used in detector commissioning starting this summer