A scalable and asynchronous detector simulation
system based on ALFA (FairMQ) — DRAFT 25.6.18

Sandro Wenzel (CERN), for the ALICE collaboration
Au ALICE

see lvana’s talk for complementary approaches

Sandro Wenzel; CHEP18 Sofia, Track?

The ALICE simulation environment:; From Run2 to Run3

SimEngines {Geant4, Geant3, FLUKA}

Virtual Monte Carlo Layer
ALIROOT

Detector Description (TGeo)

Physics Modelling (Hits)

Services: MagField, 10,
VMCApplication, Logging, EventLoop,
etc.

Run2

Sandro Wenzel; CHEP18 Sofia, Track?

The ALICE simulation environment:; From Run2 to Run3

SimEngines {Geant4, Geant3, FLUKA}

Virtual Monte Carlo Layer 42)

ALIROOT ALICE-02

Detector Description (TGeo)
Physics Modelling (Hits)

m

Run2 Run3

“Keep the big picture”; “Make in-house code smaller”;
“Potentially benefit from new developments (e.g., FairMQ)”

Detector Description (TGeo)

Physics Modelling (Hits)

Services: MagField, 10O,
VMCApplication, Logging, EventLoop,
etc.

Sandro Wenzel; CHEP18 Sofia, Track?

Motivation: The ALICE simulation scale

Simulating Pb-Pb collision can be very demanding 4000
plb preliminary

> may have up to 100k primaries in the collision to transport 3000 |

Heavyweight resource utilization using standard single- 2500 |

core event based simulation (FairRoot)

2000 F

real memory [MB]

1500 F

> ~O(GBs) of memory / event
1000 F

> may be ~O(h) of CPU time / event

°00 E

. \ . 2 central Hijing events ——
0 1000 2000 3000 4000 5000 6000 7000
time [s]

0

Consequences:

> typically bad for scheduling and efficiently using given
resource (packing problem)

P prevents access to (opportunistic) HPC

P sub-optimal user experience

Sandro Wenzel; CHEP18 Sofia, Track?

The goal : Improve on this situation

-+ Goal: A simulation system running on anything from laptop to

many-core and HPC facilities

P get result faster (if resource available) for any given event

P pbe able to utilize smallest opportunistic resources

> support VMC (not relying on a particular simulation engine)

P user convenience (same events; same output file regardless

where and how run)

- Ingredients put forward here:

> independent actors based o
processing and message passi

N heterogenous multi-

N9

> event splitting and collaborative simulation parallelism

E Sandro Wenzel; CHEP18 Sofia, Track?
ALFA talk

How? Use FairMQ as foundation —r—

FairMQ = Fair(MessageQue) an abstract
messaging library

Send(channel, message);

Enables systems of heterogenous actors
which can be used to have

asynchronous and parallel computing

easy scalability from single node to
complex cluster

OnData(Kernel);

Does not replace multi-threading but

complements it // callback for incoming message

vold Kernel(FairMQMessage message) 1

Easy to use ... in particular to strip apart) // process message

existing applications

Sandro Wenzel; CHEP18 Sofia, Track?

Ingredient 1: Separation of concern with FairMQ

- Break existing monolithic - Is it easy? ... Absolutely!
simulation into few actors with

- > Actors and communication setup in a few lines
specialized concern

of code with FairMQ

P deployed on same or different nodes

> C++ object exchange trivial thanks to ROOT
serialisation (in principle no special care needed)

- We gain:

| P few days of work starting from existing code
> Concurrent event generation,

particle transport and 1O

event hits

EventGen(Server)

Hit 10 (Readout)

»
»

\ Hit 10 (Readout)

E Sandro Wenzel; CHEP18 Sofia, Track?

. . see posters of Sergey and
Fast communication / shared memory pervis
Some overhead when sending C++ structures - Implemented a scheme similar to data acquisition:
P need to copy/serialize/deserialize > The sim workers directly put their C++ hits data into a

shared buffer
Fast alternatives such as shared memory transport

within one node are possible and supported by > Readout process streams directly from shared
FairMQ memory

> Not a single copy; not a single pack/unpack; but
some need for syncronization

shared memory buffer

std::vector<TPCH1it>

A Y
‘\ readout
A Y

event
RENICERCEWE N ———> Sim\Worker — > Hit 10 (Readout)
“readout

trigger”

E Sandro Wenzel; CHEP18 Sofia, Track?

Ingredient 2: Event splitting

Event-Splitting:

P provide less resource demanding work items

What do we gain?

P lower memory profile; potential for

full event collaboration; fit work to small time windows
EventGen(Server) s m - Is it easy?
sub-events P yes, since primaries are independent

(one at a time)

2 ‘
Is

e ﬁ P might just complicate bookkeeping (MC truth)
P

P done also by ATLAS in G4

- r
¥ 4

A
Participan

Sandro Wenzel; CHEP18 Sofia, Track?

Benchmark single worker

s this beneficial straight away or is there an

overhead”

- Works well with typical 14 1eV p-p events:

P gain few percent from split asynchronous

components

P gain higher than transport cost

P essentially no additional gain from shared

memory In this scenario

- A different test with large

negative impact due to sub-event splitting.

EventGen(Server)

Db_

b also shows no

run time

»
»

600

O split actors

O monolithic

450

300

150

0

24 36 48 60 72

number of p-p events

8 Hit 10 (Readout)

12

Sandro Wenzel; CHEP18 Sofia, Track?

Ingredient 3: Collaborative Parallel Simulation

5ased on the previous steps, the idea is to fan out the number of simulation workers
- Target a diamond workflow for user-experience (but easy to change)

- Scenario, where workers collaborate on transport/simulation
P given set of events

P even on same event via (sub-events)

sub-events m hits
< o o=

EventGen(Server)

Sandro Wenzel; CHEP18 Sofia, Track?

A scaling stuady : Memory

Isn’t there a memory problem with too
many workers?

2 a

I8

e

C)

ter all a single G4 worker has ~500MB of

tial memory usage (geometry, x-sections

Absolutely not!

> Implemented mechanism based on late
forking letting all simulation workers share
the same simulation setup (geometry, Xx-
sections) ... “copy-on-write”

> works exceptionally well: Tests with G4
shows that each additional worker is
essentially free

memory after
initialization (MB)

shared engine memory
(geometry, x-sections, etc.)

m\

\W

2600

1950

—h
o 00
o))
o)

1

2 3 4 5

number of simulation (G4)
workers

Sandro Wenzel; CHEP18 Sofia, Track?

A scaling study : Speedup

- S0 what about the speedup?

- Jested system collaborating on 1 large Pb-Pb
event (60K primaries) as a function of the number

of workers

+ Very good scaling up to number of physical

COres

... DbIg

Db_

Ph events are now accessible In a

few minutes

- logether with good memory behaviour, this
enables scheduling on (opportunistic) HPC
resources

speedup

speédup —I—

Preliminary; more
(systematics) tests on larger
systems In progress

Sandro Wenzel; CHEP18 Sofia, Track?

Elastic (and Volunteer) Computing

+Architecture is the typical foundation for elastic computing which we get as free lunch (really!!).

he number of workers can dynamically increase/decrease at any time.
- Volunteer workers can attach anywhere to a running production.

- Probably not a primary goal but nice to have.

sub-event

hits

&

“oZ2sim_join -eventserverIP xxx -hitmergerIP yyy"

Sandro Wenzel; CHEP18 Sofia, Track?

The final picture

In the novel ALICE simulation based on FairMQ ...

.. we parallelized Geant4, Geant3 and FLUKA at the same time
.. may collaborate on a single event

.. are HPC ready

.. do event generation, transport and |O asynchronously

.. provide user convenience: single merged file, single source of events

.. have elasticity
... are agile (can change deployment easily and scale across nodes)

-+ Can also combine with complementary approaches such as internal multi-threading of G4

Sandro Wenzel: CHEP18 Sofia. Track?

BACKUP SECTION

Sandro Wenzel; CHEP18 Sofia, Track?

Heterogeneous Simulation

+ An Interesting extension Is heterogenous onred engine memony
computing: simulation workers can take

different flavours Sub-events n
» G3 / G4 / Fluka collaborate on same m

event
- (e.g., as a function of particle type, “

energy)

hits

P Attach workers doing fast simulation
kernels.

- JoBe developed.

Sandro Wenzel; CHEP18 Sofia, Track?

Collaborative Parallel Workers or Trivial Parallelism??

shared engine memory : shared engine memory
(geometry, x-sections, etc.) (geometry, x-sections, etc.)

e . | more traditional;
collaborative; user friendly;
petter to transport large H

Might be better In
events quickly casy certain situations such
switch

as small events

Sandro Wenzel: CHEP18 Sofia. Track?

Deployment tests with DDS?

Sandro Wenzel; CHEP18 Sofia, Track?

Coupling to data processing

- We can directly couple simulation to DPL data processing

Sandro Wenzel: CHEP18 Sofia. Track?

Integrated fast/full simulation framework

