
A scalable and asynchronous detector simulation
system based on ALFA (FairMQ) — DRAFT 25.6.18

Sandro Wenzel (CERN), for the ALICE collaboration

1

see Ivana’s talk for complementary approaches

Sandro Wenzel; CHEP18 Sofia, Track2

The ALICE simulation environment: From Run2 to Run3
!2

SimEngines {Geant4, Geant3, FLUKA}

Detector Description (TGeo)
Physics Modelling (Hits)

Services: MagField, IO,
VMCApplication, Logging, EventLoop,

etc.

Run2

Virtual Monte Carlo Layer
ALIROOT

Sandro Wenzel; CHEP18 Sofia, Track2

The ALICE simulation environment: From Run2 to Run3
!3

SimEngines {Geant4, Geant3, FLUKA}

Detector Description (TGeo)
Physics Modelling (Hits)

Services: MagField, IO,
VMCApplication, Logging, EventLoop,

etc.

Detector Description (TGeo)
Physics Modelling (Hits)

Run2 Run3

Virtual Monte Carlo Layer
ALIROOT ALICE-O2

FairRoot FairMQ

“Keep the big picture”; “Make in-house code smaller”;
“Potentially benefit from new developments (e.g., FairMQ)”

Sandro Wenzel; CHEP18 Sofia, Track2

Motivation: The ALICE simulation scale
• Simulating Pb-Pb collision can be very demanding

may have up to 100k primaries in the collision to transport

• Heavyweight resource utilization using standard single-
core event based simulation (FairRoot)

~O(GBs) of memory / event

may be ~O(h) of CPU time / event

!4

• Consequences:

typically bad for scheduling and efficiently using given
resource (packing problem)

prevents access to (opportunistic) HPC

sub-optimal user experience

plot preliminary

Sandro Wenzel; CHEP18 Sofia, Track2

The goal : Improve on this situation

• Goal: A simulation system running on anything from laptop to
many-core and HPC facilities

get result faster (if resource available) for any given event

be able to utilize smallest opportunistic resources

support VMC (not relying on a particular simulation engine)

user convenience (same events; same output file regardless
where and how run)

• Ingredients put forward here:

 independent actors based on heterogenous multi-
processing and message passing

 event splitting and collaborative simulation parallelism

!5

Sandro Wenzel; CHEP18 Sofia, Track2

How? Use FairMQ as foundation

• FairMQ = Fair(MessageQue) an abstract
messaging library

• Enables systems of heterogenous actors
which can be used to have

• asynchronous and parallel computing

• easy scalability from single node to
complex cluster

• Does not replace multi-threading but
complements it

• Easy to use … in particular to strip apart
existing applications

!6

Actor1

Actor2

ALFA talk

Send(channel, message);

OnData(Kernel);

// callback for incoming message
void Kernel(FairMQMessage message) {
 // process message
}

DPL talk

Sandro Wenzel; CHEP18 Sofia, Track2

Ingredient 1: Separation of concern with FairMQ
• Break existing monolithic

simulation into few actors with
specialized concern

deployed on same or different nodes

• We gain:

Concurrent event generation,
particle transport and IO

!7

EventGen(Server) SimWorker Hit IO (Readout)

Hit IO (Readout)

event hits

• Is it easy? … Absolutely!

Actors and communication setup in a few lines
of code with FairMQ

C++ object exchange trivial thanks to ROOT
serialisation (in principle no special care needed)

few days of work starting from existing code

Sandro Wenzel; CHEP18 Sofia, Track2

Fast communication / shared memory

• Some overhead when sending C++ structures

need to copy/serialize/deserialize

• Fast alternatives such as shared memory transport
within one node are possible and supported by
FairMQ

!8

EventGen(Server) SimWorker Hit IO (Readout)
event

“readout
trigger”

std::vector<TPCHit>

shared memory buffer

readoutfill

see posters of Sergey and
Dennis

• Implemented a scheme similar to data acquisition:

The sim workers directly put their C++ hits data into a
shared buffer

Readout process streams directly from shared
memory

Not a single copy; not a single pack/unpack; …. but
some need for syncronization

Sandro Wenzel; CHEP18 Sofia, Track2

Ingredient 2: Event splitting

• Event-Splitting:

provide less resource demanding work items

• What do we gain?

lower memory profile; potential for
collaboration; fit work to small time windows

• Is it easy?

yes, since primaries are independent

done also by ATLAS in G4

might just complicate bookkeeping (MC truth)

!9

EventGen(Server) SimWorker

full event

sub-events
(one at a time)

Sandro Wenzel; CHEP18 Sofia, Track2

Benchmark single worker

• Is this beneficial straight away or is there an
overhead?

• Works well with typical 14TeV p-p events:

gain few percent from split asynchronous
components

gain higher than transport cost

essentially no additional gain from shared
memory in this scenario

• A different test with large Pb-Pb also shows no
negative impact due to sub-event splitting.

!10

ru
n

tim
e

0

150

300

450

600

number of p-p events
12 24 36 48 60 72

monolithic split actors

EventGen(Server) SimWorker Hit IO (Readout)

Sandro Wenzel; CHEP18 Sofia, Track2

Ingredient 3: Collaborative Parallel Simulation

• Based on the previous steps, the idea is to fan out the number of simulation workers

• Target a diamond workflow for user-experience (but easy to change)

• Scenario, where workers collaborate on transport/simulation

given set of events

even on same event via (sub-events)

!11

EventGen(Server) SimWorker Hit IO (Readout)

sub-events hits

SimWorker

SimWorker

Sandro Wenzel; CHEP18 Sofia, Track2

A scaling study : Memory

• Isn’t there a memory problem with too
many workers?

after all a single G4 worker has ~500MB of
initial memory usage (geometry, x-sections
etc)

• Absolutely not!

implemented mechanism based on late
forking letting all simulation workers share
the same simulation setup (geometry, x-
sections) … “copy-on-write”

works exceptionally well: Tests with G4
shows that each additional worker is
essentially free

!12

m
em

or
y

af
te

r
in

iti
al

iza
tio

n
(M

B)

0

650

1300

1950

2600

number of simulation (G4)
workers

1 2 3 4 5 6

EventGen Hit IO SimWorker

SimWorker

SimWorker

shared engine memory
(geometry, x-sections, etc.)

Sandro Wenzel; CHEP18 Sofia, Track2

A scaling study : Speedup

• So what about the speedup?

• Tested system collaborating on 1 large Pb-Pb
event (60K primaries) as a function of the number
of workers

• Very good scaling up to number of physical
cores …

• … big Pb-Pb events are now accessible in a
few minutes

• Together with good memory behaviour, this
enables scheduling on (opportunistic) HPC
resources

!13

Preliminary; more
(systematics) tests on larger

systems in progress

Sandro Wenzel; CHEP18 Sofia, Track2

Elastic (and Volunteer) Computing
• Architecture is the typical foundation for elastic computing which we get as free lunch (really!!).

• The number of workers can dynamically increase/decrease at any time.

• Volunteer workers can attach anywhere to a running production.

• Probably not a primary goal but nice to have.

!14

“o2sim_join -eventserverIP xxx -hitmergerIP yyy"

sub-event
hits

Sandro Wenzel; CHEP18 Sofia, Track2

The final picture

• In the novel ALICE simulation based on FairMQ …

• … we parallelized Geant4, Geant3 and FLUKA at the same time

• … may collaborate on a single event

• … are HPC ready

• … do event generation, transport and IO asynchronously

• … provide user convenience: single merged file, single source of events

• … have elasticity

• … are agile (can change deployment easily and scale across nodes)

• Can also combine with complementary approaches such as internal multi-threading of G4

!15

Sandro Wenzel; CHEP18 Sofia, Track2

BACKUP SECTION
!16

Sandro Wenzel; CHEP18 Sofia, Track2

Heterogeneous Simulation

• An interesting extension is heterogenous
computing: simulation workers can take
different flavours

G3 / G4 / Fluka collaborate on same
event
• (e.g., as a function of particle type,

energy)

Attach workers doing fast simulation
kernels.

• ToBe developed.

!17

EventGen Hit IO

sub-events hits

FLUKA

G3

G4

shared engine memory
(geometry, x-sections, etc.)

Sandro Wenzel; CHEP18 Sofia, Track2

Collaborative Parallel Workers or Trivial Parallelism?
!18

EventGen Hit IO

sub-events hits

SimWorker

SimWorker

SimWorker

shared engine memory
(geometry, x-sections, etc.)

EventGen

Hit IO

SimWorker

SimWorker

SimWorker

shared engine memory
(geometry, x-sections, etc.)

Hit IO

Hit IO

EventGen

EventGen

collaborative; user friendly;
better to transport large

events quickly

more traditional;
might be better in

certain situations such
as small events

easy
switch

Sandro Wenzel; CHEP18 Sofia, Track2

Deployment tests with DDS?
!19

Sandro Wenzel; CHEP18 Sofia, Track2

Coupling to data processing

• We can directly couple simulation to DPL data processing

!20

Sandro Wenzel; CHEP18 Sofia, Track2

Integrated fast/full simulation framework
!21

