
ALICE Analysis in Run 3
Dario Berzano

Computing in High-Energy and Nuclear Physics 2018 - Sofia, July 9, 2018

for the ALICE collaboration

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

ALICE Analysis Trains in Run 2

!2

• What the user does: ROOT C++ Analysis Task code processing a single event

• Abstraction layer: run that code locally, on Grid, on PROOF

• Input data: reconstructed (ESD + friends) or analysis-specific (AOD + deltaAOD) → TTrees

• Analysis repo: all user code on alisw/AliPhysics, built centrally, on CVMFS

• Analysis trains: read once, process many times, benefit from common processing

• Operations: user tasks assembled in wagons by operators: reduce human error

user task 2 user task 1 common

processing

reading

abstraction

avg per train job 
processing rate 

on Grid

5 MB/s

mailto:dario.Berzano@cern.ch?subject=
https://github.com/alisw/AliPhysics

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

We need to do much better in Run 3

!3

• Requirement for Run 3: estimated 5 PB every 12 hours, on average 100 GB/s

• Retain concepts that work: analysis trains • centralized code • abstraction framework

more coarse-grained 
user tasks

more common 
processing

faster storage and 
reading abstraction

required overall
processing rate on
Analysis Facilities

100 GB/s

What slows down our analysis the most?
slow storage

forget the Grid: provide for 2 or 3
analysis facilities, 50k cores each,

local storage, fast network

decompression
use better compression
algorithms and levels,  

parallelize decompression

deserialization
flat data structures with numbers,

cross-reference using numeric
indices

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Development areas

!4

Workflow 
handling

User 
interface

Allow for non-
linear workflows

Nodes subscribe
to data

Use network and
shared memory

Reuse standard
interfaces

Declarative
paradigm

Optimize common
operations

Data 
format

Low deserialization
cost

Efficient 
in-memory store

Optimized
decompression

Analysis 
facilities

Only analyze local
data

Fast local storage
and network

Allow inter-nodes
communication

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Development areas

!5

Workflow 
handling

User 
interface

Allow for non-
linear workflows

Nodes subscribe
to data

Use network and
shared memory

Reuse standard
interfaces

Declarative
paradigm

Optimize common
operations

Data 
format

Low deserialization
cost

Efficient 
in-memory store

Optimized
decompression

Analysis 
facilities

Only analyze local
data

Fast local storage
and network

Allow inter-nodes
communication

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Analysis Facility test setup at GSI: benchmarks

!6

ALICE has a test Analysis Facility at GSI (Darmstadt, DE). Run 3 requirements are
fulfilled and allows for testing, while currently running Run 2 jobs as a Tier-2

Tests on the current GSI facility
test conditions

data on Lustre uniformly
distributed over the OSSes

current analysis framework
2500 cores process data at an
aggregate speed of 32 GB/s

pure data transfer
1500 cores provide 1.2 GB/s per

core: 1.8 TB/s aggregated

Current network and storage can easily sustain transfer rates way above our
100 GB/s limit, we don’t have an hardware limitation: analysis framework
and user code are our only limits (as seen by the “old” framework speed).

See dedicated talk by S. Fleischer, K. Schwarz [link]

avg aggregated
setup limit on the
GSI analysis facility

1.8 TB/s

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Development areas

!7

Workflow 
handling

User 
interface

Allow for non-
linear workflows

Nodes subscribe
to data

Use network and
shared memory

Reuse standard
interfaces

Declarative
paradigm

Optimize common
operations

Data 
format

Low deserialization
cost

Efficient 
in-memory store

Optimized
decompression

Analysis 
facilities

Only analyze local
data

Fast local storage
and network

Allow inter-nodes
communication

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Timeframes

!8

Base processing unit for ALICE in Run 3 is the timeframe and no longer events

length
~23 ms worth of Physics 
(~1k Pb-Pb MB collisions)

size
~10 GB readout → 

~2 GB after live reconstruction

triggerless
continuous data taking 

without triggers

} shipped to the

Analysis Facilities

Compressed Timeframes
ALICE

asynchronous reco
synchronous reco 

(on-site)
detector

readout

Event Summary Data

Event Summary Data

Analysis Object Data

Ancillary AOD 1

Ancillary AOD 2

Data flow from the detector to analysis objects each format (CTF, ESD,
AOD) features a different

flavor of timeframes

+
+

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Analysis data format: requirements

!9

New data format should reduce as much as possible the cost of deserialization:
some generality will be lost for the sake of improved speed

• Simple, flat: numbers only (no classes), use tables, cross-reference via numeric indices

• Columnar: SoA in-memory structure for better growing/shrinking and vectorization

• Extensible: base format is immutable, but easily extensible because it’s SoA

• Chunked: a single timeframe can be divided in smaller units processable in parallel

• Zero size for null objects: filtered-out fields do not use RAM memory

• Recompute, don’t store: do not store everything because recomputing may be cheaper

• No data restructuring: disk → memory → network should use similar representations

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Apache Arrow

!10

Apache Arrow

arrow.apache.org

We have been experimenting with Apache Arrow: in-memory, language independent
columnar data format. Has an on-disk companion too (Apache Parquet)

Prototype based on Arrow: other solutions being investigated too

• Leverages vectorization and fits our other requirements

• Units: data organized in Tables, made of immutable Columns.
Columns shared among tables (no copy)

• Memory management: Columns backed by Buffers, which
allow for custom Memory Pools

• Meant for interoperability: allows for data exchange within the
Apache ecosystem and outside, widely supported

• Fits the ALICE Run 3 data model based on message passing

mailto:dario.Berzano@cern.ch?subject=
https://arrow.apache.org/

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Development areas

!11

Workflow 
handling

User 
interface

Allow for non-
linear workflows

Nodes subscribe
to data

Use network and
shared memory

Reuse standard
interfaces

Declarative
paradigm

Optimize common
operations

Data 
format

Low deserialization
cost

Efficient 
in-memory store

Optimized
decompression

Analysis 
facilities

Only analyze local
data

Fast local storage
and network

Allow inter-nodes
communication

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

ALICE O² framework and Data Processing Layer

!12

AOD
reader Task2

Task1

Task3
Merger1

Merger3

Preprocess

Output1

Output2

Output3
AOD

reader Task2

Task1

Task3

Preprocess

Merger2

TIMEFRAME

TIMEFRAME’

TIMEFRAME

TIMEFRAME

TIMEFRAME’

TIMEFRAME

User tasks are unaware of 
the transport backend

ALICE O²: Offline/Online
Offline/Online share the same
processing framework: do the

same for Analysis

Message-passing parallelism
Processes (devices) exchanging

data via ZeroMQ/shared memory:
user code less error prone

Data Processing Layer
O² component allowing to specify
the data flow (how inputs/outputs

are connected) declaratively

Example of analysis workflow
boxes are O² devices (independent processes)

Unzip

Unzip

Unzip

Unzip

Unzip

Unzip

Uncompress in parallel
on different processes

See dedicated talk by 
G. Eulisse [link]

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Development areas

!13

Workflow 
handling

User 
interface

Allow for non-
linear workflows

Nodes subscribe
to data

Use network and
shared memory

Reuse standard
interfaces

Declarative
paradigm

Optimize common
operations

Data 
format

Low deserialization
cost

Efficient 
in-memory store

Optimized
decompression

Analysis 
facilities

Only analyze local
data

Fast local storage
and network

Allow inter-nodes
communication

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

User interface: the new ALICE Analysis Task

!14

• Current analysis: very simple abstraction, only one degree of freedom: user writes a
function for “processing” an event (whatever “processing” means)

• A more declarative approach: allow user to specify how to filter data and preprocess it
first, and then where to store the results, in a compact way

• Transparent optimization: if user relinquishes strict control over the program flow, we
can optimize behind the scenes (better queries, lazy execution…)

ALICE contribution to TDataFrame transparently allowing Apache Arrow tables as source 
 root-project/root#1712

ROOT::RDataFrame

ROOT::RDataFrame d(input).Filter(criteria).Foreach(λ)

independent from source (ROOT Trees, Arrow…) • has Implicit Multithreading capabilities

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Analysis framework prototype: stream Arrow data

!15

• Apache Arrow + Parquet  
Split/compose tables, serialize, deserialize

• O² Data Processing Layer 
Stream only subscribed columns to tasks,
manage parallel decompression

• ROOT::RDataFrame 
User writes a lambda completely
independent from the used data format
and transport backends

Complete example available: o2ArrowColumnStreamer

Analysis framework prototype is ready for testing
Power users can now start writing analysis code to refine framework and data format

Reader sends only
selected Arrow Columns
to tasks, then each one

makes its Table

RDataFrame loops over every Arrow
rows/columns of a received timeframe

mailto:dario.Berzano@cern.ch?subject=
https://github.com/dberzano/AliceO2/blob/analysis/Framework/TestWorkflows/src/o2ArrowColumnStreamer.cxx

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Analysis framework prototype: decompress in parallel

!16

Complete example available: o2ParallelDecompressor

• LZ4 default compression 
Recommended option

• Single reader  
20 MB-large blocks

• Time-based parallelism 
DPL parallelizes by pushing
timeframes in round robin to
automatic task clones

Tests run on an old 2014 Ivy Bridge EP-based CPU:

Intel® Xeon® E5-2697 v2 @ 2.70GHz

simple read test
aggregated max 2.2 GB/s  
on single node (upper limit)

LZ4 decompression
1x → 560 MB/s 

4x → 2.2 GB/s (plateau)

on a single node
4 cores used for decompressing:

use the rest for analysis

DPL’s time pipelining
creates task copies and

connections automatically

mailto:dario.Berzano@cern.ch?subject=
https://github.com/dberzano/AliceO2/blob/analysis/Framework/TestWorkflows/src/o2ParallelDecompressor.cxx

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Exploiting dimensions of parallelism

!17

Easily exploit multiple dimensions of parallelism: the most relevant of them come for
free from the framework, without any extra knowledge by the user

• Decompress using multiple processes  
Each read timeframe is sent to multiple decompressor processes via message passing

• ROOT’s Implicit Multithreading and Apache Arrow chunks 
Each Arrow timeframe is large enough to make it worth to divide it in chunks: RDataFrame
is capable of parallelizing over them if desired (IMT on)

• Single instruction, multiple data  
Arrow’s columnar in-memory format makes it possible to vectorize certain operations (in
some cases this happens automatically at compile time)

• One topology per file 
For each input file, spawn one of the whole aforementioned topologies

mailto:dario.Berzano@cern.ch?subject=

Dario.Berzano@cern.ch - CHEP 2018 - ALICE Analysis in Run 3

Conclusions

!18

• Early stages: we needed a full stack working prototype to involve power users 
Current ALICE analysis tasks cannot be easily converted, we need to try something new

• Strategies to restrict user code domain for better performances/stability 
Independent processes, declarativeness, expose as little as possible (TDataFrame fits)

• Separate user code from data format and underlying backend 
We want to experiment with data formats other than Arrow without affecting user code

• Built on top of the unifying O² processing framework  
Development is going in parallel with the Data Processing Layer

• Retain the general successful idea of the ALICE analysis trains model 
It worked because it factored out critical parts; we want to factor out even more

mailto:dario.Berzano@cern.ch?subject=

Thanks!

