
Shared Memory Transport for ALFA
Alexey Rybalchenko, Mohammad Al-Turany, Dennis Klein, Thorsten Kollegger
GSI Helmholtz Centre for Heavy Ion Research GmbH

Devices (actors)
allow to execute user defined tasks as operating system processes

that communicate through messages passed via channels.

Device

Communication Channels

Configuration/Control Plugins

State Machine

Data flow driven processing
with devices assembled into topologies

Core Library 
provides abstract Message Queuing API

Transport implementations

na
no

m
sg

sh
m

em

Z
er

oM
Q

O
FI

Scalability Protocols

P
U

S
H

/P
U

LL

P
U

B
/S

U
B

R
EQ

/R
EP

P
A

IR

Unified communication

In
tr

a 
no

de

In
te

r 
no

de

In
te

r 
th

re
ad

. 
. 

.

T
op

ol
og

y 
Ed

it
or

P
ar

am
et

er
/C

on
di

ti
on

 
M

an
ag

em
en

t

D
D

S
(D

yn
am

ic
 D

ep
lo

ym
en

t)

T
es

ti
ng

Fa
ir

M
Q

G
eo

m
et

ry

M
ag

ne
ti

c 
Fi

el
d

Ev
en

t 
G

en
er

at
or

s

FairRoot

D
et

ec
to

r 
R

es
po

ns
e

ALFA

+

Software Stack

B
oo

st

N
et

w
or

k 
li

br
ar

ie
s

(Z
er

oM
Q

, n
an

om
sg

, O
FI

 li
bf

ab
ri

c)

C
M

ak
e

S
im

ul
at

io
n 

En
g

in
es

V
G

M

. 
. 

.

S
er

ia
li

za
ti

on
(P

ro
to

co
l 

B
uf

fe
rs

, m
sg

pa
ck

, 
Fl

at
B

uf
fe

rs
, R

O
O

T
)

R
O

O
T

G
oo

g
le

 T
es

t

GSI Helmholtz Centre for Heavy Ion Research GmbH

ALFA[1] is a modern C++ software framework for
simulation, reconstruction and analysis of particle
physics experiments. ALFA extends FairRoot[2] to
provide building blocks for highly parallelized and
data flow driven processing pipelines required by
the next generation of experiments, such as the
upgraded ALICE detector or the FAIR
experiments.

node process address format ZeroMQ[5] nanomsg[6] shmem OFI[4]

intra- intra- inproc://endpoint ✓ ✓

intra- inter-
ipc://endpoint ✓ ✓ ✓ X

tcp://host:port ✓ ✓ ✓ ✓

inter- inter-
tcp://host:port ✓ ✓ ✓

verbs://host:port X X ✓

$ fairmq-sink --id sink1 --mq-config config/benchmark.json --transport shmem(/zeromq)

$ fairmq-bsampler --id bsampler1 --mq-config config/benchmark.json --transport shmem(/zeromq) 
--same-msg false --msg-rate 2500

ZeroMQ:TCP shmem

sender ~ 68.5% ~ 1.1%

receiver ~ 89.1% ~ 0.9%

Limit throughput to ~2.5 GB/s, measure average CPU usage (one core)
(1MB message size)

2 x Intel Xeon E5-2660 v3 @ 2.60GHz (20 Cores, 40 Threads)
128 GB RAM, 60 GB shared memory segment

Shared memory transport follows the core FairMQ concepts:

General concepts:
• Hide all transport-specific details from the user.
• Clean, unified interface to different data transports.
• Combinations of different transport in one device in a 

transparent way.
• Transport switch via configuration only, without modifying 

device/user code -> same API for all transports.

Ownership concepts:
• Message owns data.
• Sender device (user code) passes ownership of data to 

framework with send call.
• Framework transfers to next device, passes ownership to 

receiver (no physical copy of the data with shared memory 
transport).

• No sharing of ownership between different devices – if the same 
message is needed by more than one receiver it is copied.

node

device 1 device 2 device 3

shared memory implementation

callbackmsg

msg msg
msg

FairMQ Shared Memory Transport

Motivation

Concepts

Connecting to Other Transports

Implementation

Monitoring

PerformanceUnmanaged Region

FairMQ[3] is a C++ Message Queuing Framework
that integrates standard industry data transport
technologies and provides building blocks for
simple creation of data flow actors and pipelines.
FairMQ hides transport details behind an abstract
interface and ensures best utilization of the
underlying transports (zero-copy, high
throughput). The framework does not impose any
format on the messages.

Allocation of messages with shmem transport and transfer to a 
second device.

AliceO2
http://alice-o2.web.cern.ch/

BNMRoot
http://mpd.jinr.ru

MPDRoot
http://mpd.jinr.ru

EnsarRoot
http://igfae.usc.es/satnurse/ensarroot.html

ExpertRoot
http://er.jinr.ru/

ATTPCRootv2
https://github.com/ATTPC/ATTPCROOTv2

R3BRoot
https://www.gsi.de/r3b

PandaRoot
https://panda.gsi.de/

CbmRoot
https://fair-center.eu/for-

users/experiments/cbm.html

FairShip
http://ship.web.cern.ch/ship/

SofiaRoot AsyEosRoot

U
se

rs

node

node

References:
[1] M. Al-Turany et al. - “ALFA: The new ALICE-FAIR software framework” - 2015, Journal of Physics: Conference Series, 
Volume 664
[2] https://github.com/FairRootGroup/FairRoot
[3] https://github.com/FairRootGroup/FairMQ

[4] CHEP 2018, Dennis Klein, “RDMA-accelerated data transport in ALFA”
[5] http://zeromq.org/
[6] https://nanomsg.org/
[7] https://www.boost.org/doc/libs/1_67_0/doc/html/interprocess.html

Provide faster inter-process transport for large messages.
Network libraries involve at least one copy of the data buffer. 

✓ - zero-copy ✓ - not zero-copy X – no support planned

node
device 1 device 2

Shared memory segment (boost::interprocess::managed_shared_memory)

handle (valid for node)

-->

pointer to data (valid for process)

msg (handle + size)meta data:

Because shared memory segments can outlive the process, it is
important to make sure no unused shared memory is left in case
devices crash and fail to cleanup used resources.

• Automatic cleanup of shared memory resources, even if all
devices crash.

• Monitoring tool to debug/monitor shared memory use.

The default message creation in FairMQ hides all the memory
allocation/management details from the user and simply provides a
ready to use buffer for every message. However, sometimes user
might have very specific memory layout requirements – typically
where hardware needs to write to that memory (e.g. detector
readout). Ideally this memory should still be usable with no/minimal
copy by further devices in the pipeline.

• UnmanagedRegion component for full memory layout control.
• Zero-copy for shared memory transport.
• Allocates memory via the transport allocator and provides it to

the user to manage.
• Message creation out of subset(s) of this region.
• Framework cleans only the entire region, not separate messages

– this is in user hands.
• Callback system to notify creator when a buffer is no longer

needed by transport.

node 1

device 1

node 2

device 2 device 3 device 4ZeroMQ shmem shmem

shmem shmem ZeroMQ

shmem

msg

• boost::interprocess[7] library for management and allocation of
shared memory - cross-platform shared memory implementation
with many features such as different allocation algorithms,
shmem STL-like containers, shmem smart pointers, message
queues and many more.

• ZeroMQ library for transfer of the meta information associated
with the memory.

The FairMQ message object holds meta information (handle + size)
on the underlying shared memory. This meta information is
transferred to other devices on the host via ZeroMQ[5].

Run the tests:

• Efficient mechanism to connect different transports to each
other. Example for this is connecting network transport to
shared memory.

• No additional copy if the target transport allows it.
• Each channel can have different transport.
• No transport specific details are needed in the device code – it

knows only channel names – the actual transport of a channel is
decided by the configuration.

Currently shmem+ZeroMQ Send and OFI[4]+shmem Send/Receive
operations are zero-copy.

Particle physics experiments, such as ALICE at CERN and future
FAIR experiments at GSI, will produce more than a terabyte of data
per second. Avoiding additional copies of the data on the same
node has huge benefits for performance and cost of data
processing in such scenarios.

CPU Usage:

Transfer Rate:

msg (handle + size)meta data:

UnmanagedRegion


