
Giulio Eulisse (CERN), for the ALICE Collaboration



ALICE IN RUN 3: POINT2

FLP

FLP

EPN

FLP

De
te

ct
or

EPN

EPN

>3TB/s
500GB/s

...

ReadOut

Synchronous  
reconstruction  

(data reduction)

On-site  
storage

EPN / Grid

...

Asynchronous  
reconstruction  

(improved conditions)

EPN / Grid

EPN / Grid Permanent 
storage

�2

up to  
100GB/s

EPN input data quantum is the 
"timeframe": 23ms of continuous 

readout data. ~10GB

EPNEPNEPNEPN

BEAM ON: Data reduction BEAM OFF: improved calibration



ALICE O2 SOFTWARE FRAMEWORK IN ONE SLIDE

�31https://indico.cern.ch/event/587955/contributions/2938082/

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility. 
➤ Message passing as a parallelism paradigm. 
➤ Shared memory backend for reduced memory usage and improved performance.



ALICE O2 SOFTWARE FRAMEWORK IN ONE SLIDE

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends: 
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for 

TPC reconstruction on the GPU. 
➤ ROOT based serialisation. Useful for QA and final results. 
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with with 

other tools.

�4

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility. 
➤ Message passing as a parallelism paradigm. 
➤ Shared memory backend for reduced memory usage and improved performance.



DISTRIBUTED SYSTEMS ARE HARD

There are only two hard problems in distributed systems: 

2. Exactly-once delivery 
1. Guaranteed order of messages 
2. Exactly-once delivery

�5



TPC 
tracking

DISTRIBUTED SYSTEMS ARE HARD

There are only two hard problems in distributed systems: 

2. Exactly-once delivery 
1. Guaranteed order of messages 
2. Exactly-once delivery 

Since too many people did not get the joke, we started thinking how to simplify this for the user, as a 
result we decided to build a data flow engine (pipelines!) on top of our distributed system backend.

Network 
Source

TPC 
tracking

File 
sink

�6

ITS 
tracking

MCH  
c.c. 

TPC/ITS 
matching



ALICE O2 SOFTWARE FRAMEWORK IN ONE SLIDE

Transport Layer: FairMQ
➤ Standalone processes for deployment flexibility. 
➤ Message passing as a parallelism paradigm. 
➤ Shared memory backend for reduced memory usage and improved performance.

Data Processing Layer

Abstracts away the hiccups of a distributed system, presenting the user a familiar "Data 
Flow" system. 
➤ Reactive-like design (push data, don't pull) 
➤ Declarative DSL for topology configuration (C++17 based). 
➤ Integration with the rest of the production system, e.g. Monitoring, Logging, Control. 
➤ Laptop mode, including graphical debugging tools.

�7

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends: 
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for 

TPC reconstruction on the GPU. 
➤ ROOT based serialisation. Useful for QA and final results. 
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with with 

other tools.



DATA PROCESSING LAYER: BUILDING BLOCK
A DataProcessorSpec defines a pipeline 
stage as a building block. 

➤ Specifies inputs and outputs in terms of 
the O2 Data Model descriptors. 

➤ Provide an implementation of how to act on 
the inputs to produce the output. 

➤ Advanced user can express possible data or 
time parallelism opportunities. 

a b

AlgorithmSpec

DataProcessorSpec

InputSpec OutputSpec

�8



DATA PROCESSING LAYER: IMPLICIT TOPOLOGY

B

C

B D
E

D

C E

Data Processing Layer

Topology is defined implicitly. 
Topological sort ensures a viable dataflow is constructed (no cycles!). 
Laptop users gets immediate feedback through the debug GUI. 
Service API allows integration with non data flow components (e.g. Control)

�9



�10

Debug GUI



�11

4 processes running and 
exchanging messages in a 

diamond topology



REACTIVE DESIGN
Data is described as pushed through the pipeline. 

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

�12



REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

Algorithm is dispatched 
when all the inputs are ready

�13



REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

Different inputs can 
have different 
lifetimes. E.g. 

conditions.

�14



REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5 t4

t

t0 t1 t2 t3 t4 t5Timeframe Input A

When data is "late"  
DPL can (optionally) 

drop it.

�15



B

C

B D
E

D

C E

Compiles into a single 
executable for the laptop user

<topology id="o2-dataflow"> 
 <decltask id="A"> 
  <exe reachable="true">../bin/o2DiamondWorkflow --id A ...</exe> 
 </decltask> 
 <decltask id="B"> 
  <exe reachable="true">../bin/o2DiamondWorkflow --id B ...</exe> 
 </decltask> 
 <decltask id="C"> 
  <exe reachable="true">../bin/o2DiamondWorkflow --id C ...</exe> 
 </decltask> 
 <decltask id="D"> 
   <exe reachable="true">../bin/o2DiamondWorkflow --id D ...</exe> 
 </decltask> 
</topology>

Generates DDS* configuration for 
deployment on a farm.

Integration with O2 Control system ongoing.*

�16*see Teo's talk: https://indico.cern.ch/event/587955/contributions/2935762/



    1 #include "Framework/runDataProcessing.h" 
    2  
    3 using namespace o2::framework; 
    4  
    5 AlgorithmSpec simplePipe(std::string const &what) { 
    6   return AlgorithmSpec{ [what](ProcessingContext& ctx) { 
    7     auto bData = ctx.outputs().make<int>(OutputRef{what}, 1); 
    8   } }; 
    9 } 
   10  
   11 WorkflowSpec defineDataProcessing(ConfigContext const&specs) { 
   12   return WorkflowSpec{ 
   13   { "A", Inputs{}, {OutputSpec{{"a1"}, "TST", "A1"}, OutputSpec{{"a2"}, "TST", "A2"}}, 
   14     AlgorithmSpec{ 
   15       [](ProcessingContext &ctx) { 
   16        auto aData = ctx.outputs().make<int>(OutputRef{ "a1" }, 1); 
   17        auto bData = ctx.outputs().make<int>(OutputRef{ "a2" }, 1); 
   18       } 
   19     } 
   20   }, 
   21   { "B", {InputSpec{"x", "TST", "A1"}}, {OutputSpec{{"b1"}, "TST", "B1"}}, simplePipe("b1")}, 
   22   { "C", {InputSpec{"x", "TST", "A2"}}, {OutputSpec{{"c1"}, "TST", "C1"}}, simplePipe("c1")}, 
   23   { "D", {InputSpec{"b", "TST", "B1"}, InputSpec{"c", "TST", "C1"}}, Outputs{}, 
   24     AlgorithmSpec{[](ProcessingContext &ctx) {}} 
   25   } 
   26   }; 
   27 } 

The previous example (GUI 
included) requires  
27 user's SLOC.

�17



A FEW EXAMPLES

�18



COMPOSABLE WORKFLOWS

�19
 

 

Declarative configuration 
allows for easy customisation: 

e.g. adding a (one or more) 
dispatchers for QA.

http://cern.ch/go/Clx8
http://cern.ch/go/Clx8


RECONSTRUCTION & GENERAL DATAFLOW

See talk from Matthias https://indico.cern.ch/event/587955/contributions/2935788/

�20



DPL AND ANALYSIS
We are investigating about using the Data Processing Layer also for Analysis.

See talk by Dario https://indico.cern.ch/event/587955/contributions/2938126/�21



PARALLEL DIGITIZATION

See talk from Sandro: "A scalable and asynchronous detector simulation system based on ALFA" (https://indico.cern.ch/event/587955/contributions/2937621/)
�22

http://www.apple.com


DPL USAGE: MID FILTERING CHAIN
Nice demonstrator by Gabriele Fronzè for MID filtering. 

�23



SUMMARY
➤ The challenges posed by Run 3 imposed to rethink ALICE Computing Architecture, 

blending the traditional Online and Offline roles. 

➤ The message passing ALFA Framework is the foundation of ALICE O2 Software 
Framework. 

➤ We built a message passing / shared memory friendly data model which minimises 
copy and (de-)serialisation.  

➤ Taking advantage of the O2 Data Model we build a data flow engine on top of 
ALFA to reduce user code and abstract away common hiccups of distributed 
systems.

�24



BACKUP

�25



TIMEFRAME
Data quantum will not be the event, but the "Timeframe". 

➤ ~23ms worth of data taking in continuous readout. Equivalent to 1000 collisions. Atomic unit. 

➤ ~10GB after readout. Vast majority in TPC clusters. 

➤ Compressed to ~2GB after asynchronous reconstruction, mostly thanks to track-model-
compression. 

➤ 100x the number of collisions of RUN2. 

➤ All MinBias. We need to (lossly) compress information, not filter it.

�26



O2 DATA MODEL
A timeframe is a collection of (header, payload) pairs. Headers defines the type of data. Different 
header types can be stacked to store extra metadata (mimicking a Type hierarchy structure). Both 
header and payloads should be usable in a message passing environment. 

Different payloads might have different serialisation strategies. E.g.: 

➤ TPC clusters / tracks: flat POD data with relative indexes, well suitable for GPU processing. 

➤ QA histograms: serialised ROOT histograms. 

➤ AOD: some columnar data format. Multiple solutions being investigated.

DataHeader Payload1 DataHeader Payload2
Custom 
header ... (            )IndexDataHeader

�27



DATA PROCESSING LAYER: HOW

�28

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{ 
  "A",  
  Inputs{ 
   InputSpec{"a", "TPC", "CLUSTERS"} 
  },  
  Outputs{ 
   OutputSpec{{"b"}, "TPC", "TRACKS"} 
  }, 
  AlgorithmSpec{ 
    [](ProcessingContext &ctx) { 
       auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1); 
    } 
  } 
}



DATA PROCESSING LAYER: HOW

�29

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{ 
  "A",  
  Inputs{ 
   InputSpec{"a", "TPC", "CLUSTERS"} 
  },  
  Outputs{ 
   OutputSpec{{"b"}, "TPC", "TRACKS"} 
  }, 
  AlgorithmSpec{ 
    [](ProcessingContext &ctx) { 
       auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1); 
    } 
  } 
}



DATA PROCESSING LAYER: HOW

�30

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{ 
  "A",  
  Inputs{ 
   InputSpec{"a", "TPC", "CLUSTERS"} 
  },  
  Outputs{ 
   OutputSpec{{"b"}, "TPC", "TRACKS"} 
  }, 
  AlgorithmSpec{ 
    [](ProcessingContext &ctx) { 
       auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1); 
    } 
  } 
}



DATA PROCESSING LAYER: HOW

�31

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{ 
  "A",  
  Inputs{ 
   InputSpec{"a", "TPC", "CLUSTERS"} 
  },  
  Outputs{ 
   OutputSpec{{"b"}, "TPC", "TRACKS"} 
  }, 
  AlgorithmSpec{ 
    [](ProcessingContext &ctx) { 
       auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1); 
    } 
  } 
}



HOW DO YOU LIMIT CONTEXT SWITCH COSTS?
We will have a number of running processes which is ≲ the number of cores. 

Our tasks take long on a CPU scale (seconds) thanks to the fact we treat one timeframe at the 
time (~1000 collisions). User code runs lock free. 

By describing our computation in terms of composable pipeline stages we keep door open for 
(eventually dynamic) NxM mapping between data processors and actual processes. 

We are willing to pay an extra price for the sake of: 

➤ Ease of deployment (microservices!) 

➤ Crash resilience (data taking!) 

➤ Ability to distribute over multiple nodes (HPC!)  

➤ Flexibility (run GEANT3 + GEANT4 + FLUKA) 

Limiting factor is in any case the GPU for TPC tracking (at least for the synchronous phase).
�32



�33


