

Grid services in a box

Container management in ALICE

Maxim Storetvedt June 22, 2018

Using containers for site-services at ALICE

- This talk will focus on the initial experiences with managing containers for VOBOX use
 - Multiple deployed within ALICE as a pilot project
- Also planned for worker nodes
 - For more on this topic, see the <u>talk</u> by Miguel Martinez Pedreira on JAliEn

Containerised VOBOXes running production jobs

Using containers for site-services at ALICE (2)

- Containers can provide several benefits over using virtual machines (VMs) for VOBOXes
 - Less overhead
 - Less use of storage
 - One-click deployment
- Container setup for VOBOXes is very different from VMs
- The next slides are dedicated to examining
 - Configuration
 - Downtime prevention
 - Performance

Selected VOBOX Container platform

- Docker used within ALICE for site-service containers
- Other container platforms available
 - Singularity quickly gaining ground within HPC
- Site-services, like VOBOXes, need a full networking stack
 - Not currently available in Singularity
 - Available in platforms like Docker and Rkt

ALICE VOBOX image configuration

- We need automatic startup of VOBOX services at container launch
- Dockerfiles
 - Scripts composed of various commands to perform on a base image
 - End result is a new, customised, image
- An image must be rebuilt to apply changes to a Dockerfile
 - Since this is a pilot project, changes are frequent
 - Results in downtime
- Solved by pointing to a script within the container – e.g /etc/init.sh

ALICE VOBOX Network Configuration

MACVLAN – A reverse VLAN

- A VLAN maps an OS side of a networking interface to multiple virtual networks on its network side (one-to-many)
- A MACVLAN maps a network side of an interface to multiple virtual interfaces, with each their own MAC address (many-to-one)
- Traffic sent from the virtual interfaces is sent directly to the underlying network, and identified by the assigned MAC address.
- VOBOX containers networked using MACVLAN
 - Allows containers to appear as normal machines on the network

MACVLAN architecture

ALICE VOBOX host configuration

- VOBOXes need many files open simultaneously
 - Will quickly reach default system limit for maximum open files when more than two VOBOX containers run on a single host
 - · Causes services to freeze or terminate
 - System limit must be increased to avoid these issues
- Autofs (for CVMFS mounting) disabled on all hosts
 - Otherwise known to cause problems for containers. Having it disabled requires less manual interaction

ALICE VOBOX host configuration (2)

- Host connectivity
 - The host and its containers can not reach/ping each other
 - Specific to how MACVLAN works
 - Create a Docker bridge between the host/containers if connectivity is needed
- Kernel access privileges
 - Containers have limited access privileges by default
 - Several tools and services may fail to launch
 - Most networking tools are affected
 - Full privileges granted for VOBOXes
 - Limited risk for this purpose, as VOBOXes are handled by sysadmins

Preventing containerised VOBOX downtime

- The ALICE containerised VOBOXes use the Live Restore feature
 - Allows containers to run without the Docker service
 - Useful for system updates → avoid downtime
 - Containers must still reconnect with the service at some point
 - Will otherwise eventually fail due to log-buffer overflow
- Container management tool (Swarm) also available
 - Not used for VOBOXes within ALICE
 - Not efficient when having few containers

Performance

- Tests on both load and performance show similar results to that of VMs
 - With less overhead and a smaller storage footprint
 - Tested with the two main storage drivers for Docker
 AUFS and Overlay2

Above: Running production jobs, alongside a VM (Overlay2)

Below: Load, alongside a VM (Overlay2)

Performance (2)

- Performance decreases when the number of storage layers increases
 - Common for copy-on-write filesystems
 - All changes to a container are stored on a separate storage layer
 - New layer added for each commit
 - Flattened images used during testing
 - All additional layers merged into one

Conclusion

- Containerised VOBOXes are in pilot production, as shown in this presentation
 - Positive results in terms of load/performance
 - Stability
- More to be deployed
 - See also the talk by Miguel Martinez Pedreira on JAliEn, for their use on worker nodes

End

Thank you

Questions or comments?

E-mail: msto@hvl.no