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Agenda 
1.  ALICE Experiment 
2.  Particle clusters simulation - problem description 
3.  Generative Models 

• Variational Autoencoder (VAE) 
• Generative Adversarial Networks (GAN) 
• Conditional Generative Adversarial Networks  

4.  Clusters simulation with Generative Models 
5.  Results 
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ALICE Experiment 
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J.Ramatowski,	Visualization	of	data	from	ALICE	experiment	in	virtual	reality	



Particle clusters 
•  Points in 3-dimensional space, 

together with the energy, which 
were presumably generated by a 
particle crossing by. 

•  Input for particle tracks generation 
• Up to 159 points per particle 
•  Possible values restricted by the 

detector size ~ 5m x 5m x 5m 
• No clusters in the inner field cage 
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I.Konorov,	Front-end	electronics	for	Time	Projection	chamber	



Simulation and reconstruction 
•  Current process relies on 5 independent modules 
•  The computationally most expensive module is particles 

propagation through detector’s matter 
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Simulation and reconstruction 
Generative solution for clusters simulation 
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Generative Models 
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Variational Autoencoder 
•  Extension of the Autoencoder 

which re-generates the input 
at the system output 

• Normalisation on the first 
hidden layer which forces it’s 
output to have a normal 
distribution 

• Generation by providing 
significant noise on the 
Latent Space 
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Generative Adversarial Networks 
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https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-
can-5leocharacters-t1h4nnWEWKfn2	

https://33milesinnewaygocounty.files.wordpress.com	

https://thechive.files.wordpress.com	
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Conditional Generative Adversarial Networks 
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https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-
can-5leocharacters-t1h4nnWEWKfn2	

https://33milesinnewaygocounty.files.wordpress.com	

https://thechive.files.wordpress.com	
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Deep convolutional GAN 
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• Class of architectures which use the convolutional and 
deconvolutional layers – mostly used with images 

All features Map 



Clusters Simulation with 
Generative Models 
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Dataset 
•  It is not possible (yet) to generate the 

full 3D image of the event at once 
•   (5000 x 5000 x 5000 resolution) 
• Our solution is to: 

•  Generate clusters for single particle (as 
2D table with x, y ,z ,q, qmax values) 

•  Two separate flows for x, y ,z and q, qmax 
•  Merge generated samples 

• Training on the original 
reconstructions 
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condDCGAN: Conditional DCGAN 

•  Deep Conditional Convolutional GAN 

•  2D Convolutional/ Deconvolutional Layers 

•  Leaky ReLU Activation 
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condGAN+: combined loss 
•  Training only on the real examples from dataset 
•  Preparing the noise from initial parameters of real examples 
• Comparing the generated samples with original ones 
• Combining original conditional GAN loss with the results of comparison 
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m - initial parameters (particle momenta),  
X  - original value corresponding to m ,  
p(z|m) - distribution of a noise vector under initial parameters m  
z - input into a generator 
G and D - generator and discriminator 
n - the number of produced clusters 

Additional parameters α and β are used to 
weight the share of individual losses.  
Best performing values are α = 0.6 and β = 0.8  

LG(m,X) = Ez⇠pz(z|m)[↵ log(1�D(G(z))) + �
1

n

nX

i=1

(Xi � ˆG(z)i)
2]



Results 
• Mean Squared Error (MSE) 

from the original helix as a 
quality measure  

•  Evaluation conducted on the 
separate test-set with ~15000 
examples 
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Method Mean MSE 
(mm) 

Median MSE 
(mm) Speed-up 

GEANT3 1.20 1.12 1 

Random (estimated) 2500 2500  N/A 

condLSTM GAN 2093.69 2070.32 
100 

condLSTM GAN+ 221.78 190.17 

condDCGAN 795.08 738.71 
25 

condDCGAN+ 136.84 82.72 

MSE visualisation: 
Red - error 
Grey- ideal helix 
Orange – original clusters 
Blue – generated clusters 



Computational costs 
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Conditional clusters simulation 
(log-log scale) 

•  Performance test conducted on the 
standalone machine with Intel Core 
i7-6850K (3.60GHz) CPU (using 
single core, no GPU acceleration) 

•  Additional order of magnitude 
speedup for Generative models with 
Nvidia Titan Xp 



Examples 
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Original event Generated event 

for	the	conditional	
clusters	simulation:	



Summary 
• Quality not yet equal to this observed with full simulation 
• Massive speed-up 25 (CPU) or 250 (GPU) comparing to standard 

simulation methods 
•  First step toward semi-real time anomaly detection tool 
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