Warsaw University of Technology

Using Generative Adversarial Networks for Fast Simulation in ALICE Experiment

Tomasz Trzciński, Kamil Deja, Łukasz Graczykowski for the ALICE Collaboration

Agenda

- I. ALICE Experiment
- 2. Particle clusters simulation problem description
- 3. Generative Models
 - Variational Autoencoder (VAE)
 - Generative Adversarial Networks (GAN)
 - Conditional Generative Adversarial Networks
- 4. Clusters simulation with Generative Models
- 5. Results

ALICE Experiment

J.Ramatowski, Visualization of data from ALICE experiment in virtual reality

CHEP 2018 | 10 July 2018 Tomasz Trzciński et al.

Particle clusters

- Points in **3-dimensional space**, together with the energy, which were presumably generated by a particle crossing by.
- Input for particle tracks generation
- Up to 159 points per particle
- Possible values restricted by the detector size ~ 5m x 5m x 5m
- No clusters in the inner field cage

I.Konorov, Front-end electronics for Time Projection chamber

Simulation and reconstruction

- Current process relies on 5 independent modules
- The computationally most expensive module is **particles propagation** through detector's matter

Simulation and reconstruction

Generative solution for clusters simulation

Generative Models

Variational Autoencoder

- Extension of the Autoencoder which re-generates the input at the system output
- Normalisation on the first hidden layer which forces it's output to have a normal distribution
- Generation by providing significant noise on the Latent Space

Mean

vector

Input

Output

Generative Adversarial Networks

https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-youcan-5leocharacters-t1h4nnWEWKfn2

Conditional Generative Adversarial Networks

Deep convolutional GAN

 Class of architectures which use the convolutional and deconvolutional layers – mostly used with images

Clusters Simulation with Generative Models

Dataset

- It is not possible (yet) to generate the full 3D image of the event at once
- (5000 x 5000 x 5000 resolution)
- Our solution is to:
 - Generate clusters for single particle (as 2D table with x, y ,z ,q, q_{max} values)
 - Two separate flows for x, y ,z and q, q_{max}
 - Merge generated samples
- Training on the original reconstructions

condDCGAN: Conditional DCGAN

Generator

- Deep Conditional Convolutional GAN
- 2D Convolutional/ Deconvolutional Layers
- Leaky ReLU Activation

- Discriminator
- Dropout
- Batch Normalization
- Sigmoid activation on output

condGAN+: combined loss

- Training only on the real examples from dataset
- Preparing the noise from initial parameters of real examples
- Comparing the generated samples with original ones
- Combining original conditional GAN loss with the results of comparison

$$\mathcal{L}_G(m, X) = \mathbb{E}_{z \sim p_z(z|m)} [\alpha \log(1 - D(G(z))) + \beta \frac{1}{n} \sum_{i=1}^n (X_i - G(z)_i)^2]$$

m - initial parameters (particle momenta),

 ${\sf X}\,$ - original value corresponding to ${\sf m}$,

p(z|m) - distribution of a noise vector under initial parameters m

z - input into a generator

G and D - generator and discriminator

n - the number of produced clusters

Additional parameters α and β are used to weight the share of individual losses. Best performing values are $\alpha = 0.6$ and $\beta = 0.8$

Results

- Mean Squared Error (MSE) from the original helix as a quality measure
- Evaluation conducted on the separate test-set with ~15000 examples

Method	Mean MSE (mm)	Median MSE (mm)	Speed-up
GEANT3	1.20	1.12	I
Random (estimated)	2500	2500	N/A
condLSTM GAN	2093.69	2070.32	100
condLSTM GAN+	221.78	190.17	
condDCGAN	795.08	738.71	25
condDCGAN+	136.84	82.72	

MSE visualisation: Red - error Grey- ideal helix Orange – original clusters Blue – generated clusters

Computational costs

- Performance test conducted on the standalone machine with Intel Core i7-6850K (3.60GHz) CPU (using single core, no GPU acceleration)
- Additional order of magnitude speedup for Generative models with Nvidia Titan Xp

Conditional clusters simulation (log-log scale)

for the conditional clusters simulation:

ALICE

Summary

- Quality not yet equal to this observed with full simulation
- Massive speed-up 25 (CPU) or 250 (GPU) comparing to standard simulation methods
- First step toward semi-real time anomaly detection tool

Acknowledgments

- The authors acknowledge the support from the Polish National Science Centre grant no. UMO-2016/21/D/ST6/01946.
- The GPUs used in this work were funded by the grant of the Dean of the Faculty of Electronics and Information Technology at Warsaw University of Technology (project II/2017/GD/1).

National Science Centre Poland

Faculty of Electronics and Information Technology Warsaw Universtiy of Technology