
Dynamic	Deployment	System	
Andrey	Lebedev	and	Anar	Manafov	

GSI,	Darmstadt,	Germany	

DDS@GitHub	
https://github.com/FairRootGroup/DDS	

More	info	
http://dds.gsi.de	

DDS	

From	user’s	perspective	

dds-session !
dds-agent-cmd!
dds-custom-cmd!

dds-info !
dds-prep-worker !

dds-server !
dds-stat !

dds-submit !
dds-test !

dds-topology !
dds-user-defaults !

CIntercomService service;
CKeyValue keyValue(service);

// Subscribe on key update events
keyValue.subscribe([](!
 const string& _propertyID,
 const string& _key,
 const string& _value)
{…});

// Start listening to events we have
subscribed on
service.start();	

Topology	 CLI	tools	 Intercom	API	

<topology id="myTopology"> !
 [... Definition of tasks,
properties, and collections ...] !
 <main name="main"> !
 [… Definition of the topology
itself, including ...] !
 </main> !
</topology> !

DDS protocol

DDS Core - event-based (notifiocation engine), async architecture

DDS intercom API

Key-value
propagation Custom commands

T
o
p
o
l
o
g
y

e
n
g
i
n
e

RMS plug-ins

User defaults engine (configuration)

Session control

DDS transport

TCP channels

E
x
t
e
r
n
a
l

p
r
o
c
e
s
s
e
s

c
o
n
t
r
o
l

Shared memory channels

l
o
c
a
l
h
o
s
t

s
s
h

s
l
u
r
m

m
e
s
o
s

p
b
s

l
s
f

Log engine

10000		
foot	view	

Motivation	
Create	a	system,	which	is	able	to	spawn	and	control	

hundreds	of	thousands	of	different	user's	tasks	which	are	
tied	together	by	a	topology,	can	be	run	on	online	clusters	

or	computing	clusters	which	use	different	resource	
management	systems	(RMS)	or	even	on	a	laptop	and	can	

be	controlled	by	external	tools.	

DDS	
commander	

server	 Host	

Host	

Basic	concepts	
Single	responsibility	principle	command	line	tool-set	

and	API;	users’	task	is	a	black	box	–	it	can	be	an	
executable	or	a	script;	watchdogging;	rule-based	
execution	of	tasks;	plug-in	system	to	abstract	from	
RMS	including	SSH	and	a	localhost	plug-ins;	doesn’t	
require	pre-installation	and	pre-configuration	on	the	

worker	nodes;	private	facilities	on	demand	with	
isolated	sandboxes;	key-value	propagation	and	

messaging.	

Property	propagation	
feature	allows	user’s	tasks	to	exchange	and	
synchronize	the	configuration	(key-value)	

dynamically	at	runtime.	For	example,	in	order	
to	synchronize	the	startup	of	the	user’s	tasks.	
It	is	highly	optimized	for	massive	key-value	

transport	and	has	a	decentralized	architecture.	

	feature	allows	user’s	tasks	and	ext.	utilities	to	
exchange	messages,	so-called,	custom	

commands.	It	can	be	used,	for	example,	as	a	
basis	for	a	control	system.		

Custom	messaging	

Current	release	

v2.0	

DDS	is	being	developed	
in	frames	of	ALFA	

(ALICE-FAIR)	project.	

DDS	core	implements	an	event-
driven	async	architecture.	

