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Motivation Basic concepts

Create a system, which is able to spawn and control Single responsibility principle command line tool-set
hundreds of thousands of different user's tasks which are and API; users’ task is a black box — it can be an

tied together by a topology, can be run on online clusters executable or a script; watchdogging; rule-based
or computing clusters which use different resource execution of tasks; plug-in system to abstract from
management systems (RMS) or even on a laptop and can RMS including SSH and a localhost plug-ins; doesn’t
be controlled by external tools. require pre-installation and pre-configuration on the

Host DDS i< beine d I r worker nodes; private facilities on demand with
> 15 DEINg EVEIOPE isolated sandboxes; key-value propagation and
in frames of ALFA messaging
(ALICE-FAIR) project. '
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DDS core implements an event-
N driven async architecture.
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Property propagation 10000

feature allows user’s tasks to exchange and =
synchronize the configuration (key-value) fOOt VIEW
dynamically at runtime. For example, in order
to synchronize the startup of the user’s tasks.
It is highly optimized for massive key-value
transport and has a decentralized architecture.

Custom messaging

feature allows user’s tasks and ext. utilities to Session control
4 exchange messages, so-called, custom Log engine
commands. It can be used, for example, as a User defaults engine (configuration)
baS|S fOr a Control System DDS Core - event-based (notifiocation engine), async architecture
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RMS plug-ins DDS intercom API

DDS protocol

TCP channels Shared memory channels

Topology engine
External processes
control

DDS transport

From user’s perspective
Topology CLI tools Intercom API

CIntercomService service;
CKeyValue keyValue(service);

dds-session
dds-agent-cmd
dds-custom-cmd
dds-info
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<topology id="myTopology"> :
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[ // Subscribe on key update events
: properties, and collections ...]
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keyValue.subscribe([]( :

: T PR'Y const string& _propertyID, [
<maln name= maln--> const strings _key, I
[.. Definition of the topology I
itself, including ...] I
</main> :
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</topology>

dds-server
dds—-stat
dds-submit
dds-test
dds-topology
dds-user-defaults
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// Start listening to events we have
subscribed on
service.start();
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DDS@GitHub 7%

https://github.com/FairRootGroup/DDS [w]

% More info

ALICE http://dds.gsi.de
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