Dynamic Deployment System

Andrey Lebedev and Anar Manafov
GSI, Darmstadt, Germany

Motivation Basic concepts

Create a system, which is able to spawn and control Single responsibility principle command line tool-set
hundreds of thousands of different user's tasks which are and API; users’ task is a black box — it can be an

tied together by a topology, can be run on online clusters executable or a script; watchdogging; rule-based
or computing clusters which use different resource execution of tasks; plug-in system to abstract from
management systems (RMS) or even on a laptop and can RMS including SSH and a localhost plug-ins; doesn’t
be controlled by external tools. require pre-installation and pre-configuration on the

Host DDS i< beine d I r worker nodes; private facilities on demand with
> 15 DEINg EVEIOPE isolated sandboxes; key-value propagation and
in frames of ALFA messaging
(ALICE-FAIR) project. '
connnander
server Iﬂost

Current release

\ :
DDS core implements an event-
N driven async architecture.

r
|
1
1
1
1
1
|
|
|
|
|

Property propagation 10000

feature allows user’s tasks to exchange and =
synchronize the configuration (key-value) fOOt VIEW
dynamically at runtime. For example, in order
to synchronize the startup of the user’s tasks.
It is highly optimized for massive key-value
transport and has a decentralized architecture.

Custom messaging

feature allows user’s tasks and ext. utilities to Session control
4 exchange messages, so-called, custom Log engine
commands. It can be used, for example, as a User defaults engine (configuration)
baS|S fOr a Control System DDS Core - event-based (notifiocation engine), async architecture

Key-value

propagation Custom commands

0

< 0 W (o)

alalal i
= £

RMS plug-ins DDS intercom API

DDS protocol

TCP channels Shared memory channels

Topology engine
External processes
control

DDS transport

From user’s perspective
Topology CLI tools Intercom API

CIntercomService service;
CKeyValue keyValue(service);

dds-session
dds-agent-cmd
dds-custom-cmd
dds-info

B

I

0
<topology id="myTopology"> :
0
0
I dds-prep-worker
0
[
[
[
I
I
I
I
[

[... Definition of tasks,

r
I
I
|
[// Subscribe on key update events
: properties, and collections ...]

0

0

[

[

[

I

I

I

I

[

2
0

0

0

0

0

keyValue.subscribe([](:

: T PR'Y const string& _propertyID, [
<maln name= maln--> const strings _key, I
[.. Definition of the topology I
itself, including ...] I
</main> :

l

l

l

l

J

</topology>

dds-server
dds—-stat
dds-submit
dds-test
dds-topology
dds-user-defaults

const strings _value)

~A—
A
V
-

// Start listening to events we have
subscribed on
service.start();

e
|

DDS@GitHub 7%

https://github.com/FairRootGroup/DDS [w]

% More info

ALICE http://dds.gsi.de

S

=== I [|R

