# Quantum mechanics with magnetic backgrounds with manifest symmetry and locality

Joseph Tooby-Smith

University of Cambridge

Based on: /hep-th/1905.11999 with Ben Gripaios and Joe Davighi

| "As you progress in this PhD you're solving increasingly simple |
|-----------------------------------------------------------------|
| problems using increasingly complicated techniques"             |
|                                                                 |

### Current project

$$\int \frac{1}{2} \dot{x}^2 dt$$

#### Current project

$$\int \frac{1}{2} \dot{x}^2 dt$$

Spoiler alert, answer:

$$e^{ikx}$$
,  $E_k = \frac{1}{2}k^2$ 

#### This talk

$$\int (\frac{1}{2}\dot{x}^2 + \frac{1}{2}\dot{y}^2 - By\dot{x})dt$$

#### This talk

$$\int (\frac{1}{2}\dot{x}^2 + \frac{1}{2}\dot{y}^2 - By\dot{x})dt$$

Want to solve this in a generalisable way!

#### This talk

$$\int (\frac{1}{2}\dot{x}^2 + \frac{1}{2}\dot{y}^2 - By\dot{x})dt$$

Want to solve this in a generalisable way! Symmetry under  $(x, y) \rightarrow (x + x', y + y')$ 

$$\int (\frac{1}{2}\dot{x}^2 + \frac{1}{2}\dot{y}^2 - By\dot{x} - By'\dot{x})dt$$

# How to solve a really simple QM problem using an overly complicated technique

Joseph Tooby-Smith

University of Cambridge

Based on: /hep-th/1905.11999 with Ben Gripaios and Joe Davighi

# Step 1: Add redundant degree of freedom

$$\int (\frac{1}{2}\dot{x}^2 + \frac{1}{2}\dot{y}^2 \underbrace{-\dot{s} - By\dot{x}}_{\Delta})dt$$

Magnetic field (P, A) we consider the dynamics on P.

# Mathematical interlude: Principal bundle



#### Step 2: A new symmetry

$$\int (\frac{1}{2}\dot{x}^2 + \frac{1}{2}\dot{y}^2 - \dot{s} - By\dot{x})dt$$

Is strictly invariant under the Heisenberg group<sup>1</sup>

$$[(x',y',s')] \cdot [(x,y,s)] = [(x+x',y+y',s+s'-By'x)].$$
 (1)

a U(1)-central extension of the group of translations,  $\mathbb{R}^2$ .

 $<sup>^{1}</sup>$  Tuynman, G.M., Wiegerinck, W.A.J.J., 1987. Central extensions and physics. Journal of Geometry and Physics 4, 207–258. https://doi.org/10.1016/0393-0440(87)90027-1

#### Mathematical interlude: Central Extensions

$$0\longrightarrow U(1)\longrightarrow \tilde{G}\longrightarrow G\longrightarrow 0$$
 where  $U(1)$  is in the centre of  $\tilde{G}$ .

# Step 3: Formulating QM on this new system

$$\int (\frac{1}{2}\dot{x}^2 + \frac{1}{2}\dot{y}^2 - \dot{s} - By\dot{x})dt$$

has the (total) Hamiltonian

$$\hat{H} = \frac{1}{2} \left( -i \frac{\partial}{\partial x} + By \right)^2 - \frac{1}{2} \frac{\partial}{\partial y^2} + v(t) \left( -i \frac{\partial}{\partial s} + 1 \right)$$

# Step 3: Formulating QM on this new system

$$\int (\frac{1}{2}\dot{x}^2 + \frac{1}{2}\dot{y}^2 - \dot{s} - By\dot{x})dt$$

has the (total) Hamiltonian

$$\hat{H} = \frac{1}{2} \left( -i \frac{\partial}{\partial x} + By \right)^2 - \frac{1}{2} \frac{\partial}{\partial y^2} + v(t) \left( -i \frac{\partial}{\partial s} + 1 \right)$$

acting on the Hilbert space

$$\mathcal{H} = \{ \psi \in L^2(\mathrm{Hb}) \mid (-i\partial_s + 1) \psi = 0 \}$$

### Step 4: Decompose wavefunction into irreps

 ${\cal H}$  has a Left-regular rep

$$\rho(\mathsf{g})\circ\psi(\mathsf{p})=\psi(\mathsf{g}^{-1}\mathsf{p})$$

#### Step 4: Decompose wavefunction into irreps

 ${\cal H}$  has a Left-regular rep

$$\rho(\mathsf{g})\circ\psi(\mathsf{p})=\psi(\mathsf{g}^{-1}\mathsf{p})$$

Decomposition of a rep  $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$ . In our case

$$\psi(x,y,s) = \int dr dt \frac{|B|}{2\pi} \left\{ e^{iB(xr-s/B)} \delta(r+y-t) \right\} f(r,t)$$

# Step 5: Apply to the Schrödinger equation

Since

$$\hat{H}\rho(g) = \rho(g)\hat{H}$$

we get the simplification of the SE

$$\left(\frac{1}{2}B^2t^2 - \frac{1}{2}\frac{\partial^2}{\partial t^2} - E\right)f(r,t) = 0.$$

# Step 6: Solve and remove redundancy

$$\Psi_n(x,y,s) = \frac{|B|}{2\pi} \int dr dt \ H_n\left(\sqrt{|B|}t\right) e^{-|B|t^2/2} g(r) e^{i(Bxr-s)} \delta(r+y-t)$$

with energies

$$E_n = \frac{|B|}{2}(2n+1)$$

#### Advantages

- 1. Gauge independent
- 2. Generalizable
- 3. Solves two problems:
  - 3.1 Lagrangian shifting by a total derivative under the symmetry group
  - 3.2 Not being able to write a lagrangian down

#### Disadvantages

- 1. Need to know the group representations
- 2. Need to know how to do decomposition

#### Other Examples

- 1. Rigid body
- 2. Dirac Monopole
- 3. Dyon
- 4. Landau levels using Euclidian group
- 5. Heisenberg group
- 6. Trapped particle

# Thanks for Listening!