

Light charged Higgs boson with dominant decay to cb quarks and its search at LHC and LEP colliders [arXiv:1810.05403]

Muyuan Song

University of Southampton

July 10, 2019

Supervisors: Prof. Stefano Moretti Dr.Andrew Akeroyd

Muyuan Song (Southampton)

Light charged Higgs in 3HDM

July 10, 2019 1 / 23

Motivation

- 2 Light charged Higgs in 3HDM (Three-Higgs-Doublet-Model)
- 3 Mixing matrix and Yukawa couplings
- 4 Charged Higgs decay with cb quark
- **5** Collider Searches

1. Motivation

イロト イヨト イヨト イ

Motivation of charged Higgs and MHDM(Multi-Higgs-Doublets-Model)

- A neutral-charged Spin 0 Higgs Boson has been detected at LHC
- Existence of Charged Higgs boson?

	SPIN 0	SPIN 1/2	SPIN 1
Charge 0	H	$ u_{e}, u_{\mu}, u_{ au}$	γ, Z, g
Charge ± 1	H^{\pm} ?	$e^{\pm}, \mu^{\pm}, au^{\pm}, u, d, c, s, t, b$	W^{\pm}

Reason for MHDM:

- Supersymmetry, DM...
- Three generations of fermions. More generations (doublets) of scalars?
- Extra sources of CP-violation.

2.Light charged Higgs in 3HDM

- (日)

Light charged Higgs in 3HDM

• Three active isospin fields Φ_i (i = 1, 2, 3) are introduced, and each contain a vacuum expectation value with sum rule

$$\Phi_i = \begin{pmatrix} \phi_i^+ & \phi_i^+ \\ (v_i + \phi_i^{0,real} + i\phi_i^{0,imag})/\sqrt{2} \end{pmatrix},$$
$$\sum_i v_i^2 = v_{sm}^2 = (246 \, \text{GeV})^2$$

• The mass matrix of the charged scalars is diagonalized by the 3 × 3 matrix U :[C. Albright, J. Smith and S.-H.H.Tye]

$$\left(\begin{array}{c}G^+\\H_2^+\\H_3^+\end{array}\right) = U \left(\begin{array}{c}\phi_1^+\\\phi_2^+\\\phi_3^+\end{array}\right).$$

• By considering H_3^+ is much heavier, the light charged Higgs H_2^+ after imposing two soft-broken Z_2 symmetries will have:

$$\mathcal{L}_{H_2^{\pm}} = -H_2^+ \{ \frac{\sqrt{2}V_{ud}}{v_{sm}} \bar{u}(m_d X P_R + m_u Y P_L) d + \frac{\sqrt{2}m_l}{v_{sm}} Z \bar{\nu}_L I_R \} + H.c.$$

3. Mixing matrix and Yukawa couplings

Yukawa Couplings of light charged Higgs in 3HDM

• Yukawa couplings for H_2^+ can be written as:

$$\mathbf{X} = \frac{U_{d2}^{\dagger}}{U_{d1}^{\dagger}}, \qquad \mathbf{Y} = -\frac{U_{u2}^{\dagger}}{U_{u1}^{\dagger}}, \qquad \mathbf{Z} = \frac{U_{\ell2}^{\dagger}}{U_{\ell1}^{\dagger}}.$$

• Five independent versions of Yukawa interactions of 3HDM with NFC based on charged assignment of Z_2 symmetries.

	u	d	ℓ
3HDM(Type I)		2	2
3HDM(Type II)	2	1	1
3HDM(Lepton-specific)		2	1
3HDM(Flipped)		1	2
3HDM(Democratic)		1	3

Mixing matrix U in 3HDM

• The matrix U can be written explicitly as a function of four parameters $\tan \beta$, $\tan \gamma$, θ , and δ , where

$$aneta=v_2/v_1, \qquad an\gamma=\sqrt{v_1^2+v_2^2}/v_3$$
 .

- v₁, v₂, and v₃ are the vacuum expectation values of the three Higgs doublets.
- θ is the mixing angle between light and heavy charged Higgses
- δ is the CP phase.
- The explicit form of *U* given as : [C. Albright,J. Smith and S.-H.H.Tye]

$$= \left(\begin{array}{ccc} s_{\gamma}c_{\beta} & s_{\gamma}s_{\beta} & c_{\gamma} \\ -c_{\theta}s_{\beta}e^{-i\delta} - s_{\theta}c_{\gamma}c_{\beta} & c_{\theta}c_{\beta}e^{-i\delta} - s_{\theta}c_{\gamma}s_{\beta} & s_{\theta}s_{\gamma} \\ s_{\theta}s_{\beta}e^{-i\delta} - c_{\theta}c_{\gamma}c_{\beta} & -s_{\theta}c_{\beta}e^{-i\delta} - c_{\theta}c_{\gamma}s_{\beta} & c_{\theta}s_{\gamma} \end{array}\right)$$

Here s, c denote the sine or cosine of the respective parameter.

Experiment constraints on X,Y

$$X = \frac{U_{d2}^{\dagger}}{U_{d1}^{\dagger}}, \qquad Y = -\frac{U_{u2}^{\dagger}}{U_{u1}^{\dagger}}, \qquad Z = \frac{U_{\ell2}^{\dagger}}{U_{\ell1}^{\dagger}}.$$

• $b \rightarrow s\gamma$ constrains the real part of (XY^*) . For $m_{H^{\pm}} = 100$ GeV case: [Michael Trott, Mark B. Wise,arXiv:1009.2813v3]

$$-1.1 \leq \operatorname{Re}(XY^*) \leq 0.7.$$

• The Electric Dipole Moment (EDM) of the neutron (CP-violation can manifest from Yukawa couplings) gives the following constraint for $m_{H^{\pm}} = 100 \text{ GeV}$:

$$|\mathrm{Im}(XY^*)| \le 0.1.$$

4. Charged Higgs decay with cb quark

- (日)

- For $m_{H^\pm} > m_t, H^\pm o tb$ could dominate for all 2HDMs and 3HDMs.
- Only focus on fermions by considering additional neutral scalars to be much heavier than H^{\pm} .

$$\Gamma(H^\pm o \ell^\pm
u) = rac{G_F m_{H^\pm} m_\ell^2 |Z|^2}{4\pi \sqrt{2}} \; ,$$

$$\Gamma(H^{\pm} \to ud) = rac{3G_F V_{ud} m_{H^{\pm}} (m_d^2 |X|^2 + m_u^2 |Y|^2)}{4\pi\sqrt{2}}$$

• $|X| \gg |Y|, |Z|, BR(H^{\pm} \rightarrow cb)$ could be dominant (~ 80%).

۲

۲

Dominant *cb* decay from light H^{\pm} in 3HDM

Benefit of *cb*:

- Strategy to distinguish between 2HDM and 3HDM due to $b \rightarrow s\gamma$ constrain and limit from $M_{H^{\pm}}$.
- search gap within region $80 \rightarrow 90$ GeV.
- Main background is WW, and $W^{\pm} \rightarrow cb$ is small due to small CKM matrix element ($V_{cb} \approx 0.04$).
- Use b-tagging to select signal events and to suppress the background. Parameter study:
 - Input fundamental parameters for X, Y, Z are varied as follows :

$$\begin{array}{c} -\frac{\pi}{2} \leq \theta \leq 0 \\ 0 \leq \delta \leq 2\pi \end{array}, \begin{array}{c} 1 \leq \tan\beta \leq 60 \\ 1 \leq \tan\gamma \leq 60 \end{array}$$

• 2 types (Flipped and Democratic) can have large $BR(H^{\pm} \rightarrow cb)$.

	U	d	l
3HDM(Type I)	2	2	2
3HDM(Type II)	2	1	1
3HDM(Lepton-specific)	2	2	1
3HDM(Flipped)	2	1	2
3HDM(Democratic)	2	1	3
		4	

Results for $BR(H^{\pm} \rightarrow cb)$ in Flipped 3HDM in $[tan\gamma, tan\beta]$ plane

Figure: Branching ratio of H^{\pm} decay through *cb* channel with $\theta = -\pi/3, \delta = 0, M_{H^{\pm}} = 100 \text{ GeV}$ in $[tan\gamma, tan\beta]$ plane. Left Panel: Contours of $BR(H^{\pm} \rightarrow cb)$. Right Panel :Contours of $Re(XY^*)$ ($b \rightarrow s\gamma$ constraint).

Results for $BR(H^{\pm} \rightarrow cb)$ in Democratic 3HDM in $[\delta, \theta]$ plane

Figure: Branching ratio of H^{\pm} decay through *cb* channel with $tan\beta = 40$, $tan\gamma = 10$, $M_{H^{\pm}} = 100 \text{ GeV}$ in $[\delta, \theta]$ plane. Left Panel: Contours of $BR(H^{\pm} \rightarrow cb)$. Central Panel : Contours of $Re(XY^*)$ in $[\delta, \theta]$ plane($b \rightarrow s\gamma$ constraint). Right Panel : Contours of $Im(XY^*)$ in $[\delta, \theta]$ plane (Neutron EDM constraint).

Image: A Image: A

< □ > < 凸

5.Collider Searches and Detection Prospects

Recent charged Higgs research from colliders

July 10, 2019 17 / 23

Light charged Higgs in 3HDM

Muyuan Song (Southampton)

$$\Gamma(t o W^{\pm}b) = rac{G_F m_t}{8\sqrt{2}\pi} [m_t^2 + 2M_W^2] [1 - M_W^2/m_t^2]^2$$

$$\Gamma(t
ightarrow H^{\pm}b) = rac{G_F m_t}{8\sqrt{2}\pi} [m_t^2 |Y|^2 + m_b^2 |X|^2] [1 - m_{H^{\pm}}^2/m_t^2]^2 \,.$$

- BR(t→ H[±]b) depends on magnitudes of |X|, |Y|. It affects production rate of charged Higgs even LHC has sensitivity for mass region 80 to 90 GeV.
- LEP search involves only gauge couplings and unknown charged Higgs mass parameter.

LEP search results on $Br(H^{\pm} \rightarrow \tau \nu)$ [arXiv: 1301.6065]

Left Panel : Statistical Significance from background expectation. *Right Panel* : excluded regions in the $Br(H^{\pm} \rightarrow \tau \nu)$ vs $M_{H^{\pm}}$ plane. The shaded area is excluded at 95 % C.L or higher. Solid line is expected exclusion limit at 95 %. The dotted line is observed limit at 99.7 % C.L.

Muyuan Song (Southampton)

July 10, 2019 19 / 23

6.Summary

・ロト ・ 日 ト ・ 目 ト ・

- We have studied the light charged Higgs case in 3HDM with $m_{H^\pm} < m_t$.
- Two types of 3HDM (Flipped and Democratic) can have large $BR(H^{\pm} \rightarrow cb)$. b-tagging could be a good strategy to search for charged Higgs signals.
- First search for t to $H^{\pm}b$ followed by H^{\pm} to cb carried out at LHC recently (August, 2018), with limits for 90 GeV $\leq m_{H^{\pm}} \leq 150$ GeV.
- Currently no sensitivity to 80 GeV $\leq m_{H^{\pm}} \leq$ 90 GeV, but sensitivity expected in the future.
- If light H[±] with small |X|, |Y| escapes detection at LHC (Blind Spot), then it still could be searched at future e⁺e⁻ colliders.
- Promotion of higher energy e^+e^- colliders is necessary (ie. ILC,CEPC, FCC-ee).

< □ > < □ > < □ > < □ > < □ > < □ >

Thanks for Listening

References

ATLAS Collaboration and others (2018)

Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector

Journal Name Phys. Rev. D21 (1980) 711.

C. Albright, J. Smith and S.-H.H. Tye(1980) Signatures for charged Higgs boson production in e + e collisions Journal Name Physical Review D,85(11),115002.

Thomas G. Rizzo (1988)

 $b \rightarrow s\gamma$ in the two-Higgs-doublet model Journal Name Physical Review D,38, 820.

- DØ Collaboration (2009)
- S. L. Glashow and S. Weinberg, Phys. Rev. D 15 (1977) 1958

On theories of enhanced CP violation in $B_{s,d}$ meson mixing, Michael Trott, Mark B. Wise