IDEA Drift Camber: the occupancy "saga" and other considerations

F. Grancagnolo INFN – Lecce

CERN, June 26, 2018

OUTLINE

A few facts exploiting cluster counting/timing besides spatial resolution improvement and particle identification (not discussed here).
 A short clarifying summary of the "occupancy saga".
 An example (MEG2) of tracking in high occupancy environment.
 A brief discussion on the drift chamber DAQ and

Data Transfer.

F.Grancagnolo - IDEA DC: A few facts

2

Consideration about occupancy

- Average drift signal duration: $<\Delta t > = t_{max}/2$ (slightly larger given the time compression at small impact parameters) and $< t_{first} > = t_0 + t_{max}/2$.
- A peak in the signal is identified as an electron if above threshold and with proper rise and fall times.
- A physical hit must contain at least a few electron peaks spaced by no more than the cluster separation time, δt_{cl}.
- An isolated electron peak is suppressed if its time differs from t_{first} of the track hit by > δt_{cl} . Otherwise, it slightly affects the impact parameter and negligibly the particle identification.
- Two synchronous tracks overlapping in the same cell are indistinguishable, the promptest one defines the impact parameter.
- \circ Two tracks delayed in time (i.e., belonging to different BX) can be separated if t_{last} of the earlier one and t_{first} of the later one differ by > δt_{cl}.

25/06/18

- In the case of 20 ns inter-bunch crossing time (at 91 GeV) and 400 ns maximum drift time, assuming that the hits are all from ionisation track segments and not from isolated Compton electrons from photons, it would be straightforward to integrate the occupancy over 20 BX.
 However,
 - hits associated to BX_i and BX_j are separated in time and will not contribute to the occupancy if (i-j)×20 ns ≥ δt_{cl}.
 - assuming conservatively δt_{cl} ≈ 100 ns, the occupancy must be integrated over 4 BX at most.

Data Transfer: Example

Running conditions D.C. operating conditions

- 91 GeV c.m. energy
- 200 KHz trigger rate
 - o 100 KHz Z decays
 - \circ **30 KHz** γγ → hadrons
 - o 50 KHz Bhabha

25/06/18

• 20 KHz beam backgrounds

- drift cells: 56,000 , layers: 112
- max drift time (≈1 cm): 400 ns
- cluster density: 20/cm
- gas gain: 6×10⁵
- single e⁻ p.h.: 6 mV
- r.m.s. electronics noise: 1 mV
- e⁻ threshold: 2 mV; rise time 1 ns
- signal digitization:

12 bits at 2×10⁹ bytes/s

11

Example: traditional data transfer

Z decays:

10⁵ events/s × 20 tracks/event × 130 cells/track × 4×10⁻⁷ s × 2×10⁹ bytes/cell/s ≅ 200 Gb/s

$\gamma\gamma \rightarrow$ hadrons:

 3×10^4 events/s × 10 tracks/event × 130 cells/track × 4×10^{-7} s × 2×10^9 bytes/cell/s = **30 Gb/s** Bhabha:

 5×10^4 events/s × 2 tracks/event × 0 cells/track × 4×10^{-7} s × 2×10^9 bytes/cell/s \cong 0 Gb/s Beam noise (assume 2.5% occupancy):

 2×10^4 events/s × 1.5×10^3 cells/event × 4×10^{-7} s × 2×10^9 bytes/cell/s = 25 Gb/s

Isolated peaks (assume 2.5% occupancy):

2×10⁵ events/s × 1.5×10³ cells/event × 4×10⁻⁷ s × 2×10⁹ bytes/cell/s **≅ 250 Gb/s**

Transferring all digitized data (reading both ends of wires):

≥ 1 TB/s!

25/06/18

Example: the solution

The solution consists in transferring, for each hit drift cell, **instead of the full spectrum of the signal**, only the minimal information relevant to the application of the cluster timing/counting techniques, i.e. **the amplitude and the arrival time of each peak associated with each individual ionisation electron**.

This is accomplished by using a **FPGA** for the real time analysis of the data generated by the drift chamber and successively digitized by an ADC.

A fast readout algorithm (CluTim) for identifying, in the digitized drift chamber signals, the individual ionization peaks and recording their time and amplitude has been developed as VHDL/Verilog code implemented on a Virtex 6 FPGA, which allows for a maximum input/output clock switching frequency of 710 MHz. The hardware setup includes also a 12-bit monolithic pipeline sampling ADC at conversion rates of up to 2.0 GSPS.

Example: CluTim algorithm

At the beginning of the signal processing procedure, a counter starts to count providing the timing information related to the signal under scrutiny.

The determination of a peak is done by relating the i-th sampled bin to a number n of preceding bins, where n is related to the rise times of the signal peak. Details of the algorithm can be found in next slide.

Example: CluTim data transfer

Z decays:

10⁵ events/s × 20 tracks/event × 130 cells/track × 20 peaks/cell × 2 bytes/peak ≅ 10 Gb/s

$\gamma\gamma \rightarrow$ hadrons:

3×10⁴ events/s × 10 tracks/event × 130 cells/track × 20 peaks/cell × 2 bytes/peak ≅ **1.6 Gb/s** Bhabha:

5×10⁴ events/s × 2 tracks/event × 0 cells/track × 20 peaks/cell × 2 bytes/peak ≅ 0 Gb/s Beam noise (assume 2.5% occupancy):

2×10⁴ events/s × 1.5×10³ cells/event × 0 peaks/cell × 2 bytes/peak ≅ 0 Gb/s

Isolated peaks (assume 2.5% occupancy):

2×10⁵ events/s × 1.5×10³ cells/event × 0 peaks/cell × 2 bytes/peak ≅ 0 Gb/s

Transferring only time and amplitude of each electron peak (reading both ends of wires):

25/06/18

Thin solenoid for the CTF detector placed in front of the identification system (option)

Alexey Bragin

Budker Institute of Nuclear Physics, Novosibirsk, Russia

May 2018

Thickness in radiation lengths

Materials	Thickness X, mm	Radiation length Х ₀ мм	ו X/X ₀	Material ratio, %
SC wire, NbTi/Cu = 1/1	0.56	17.7	0.032	31.0
Carbon fibre (1.5 g/cm ³)	1.5	251	0.006	5.8
Epoxy compound (NB as filler)	1.5	150*	0.010	9.7
Aluminum strips (2 x 0.5 mm)	1.0	88.9	0.011	10.7
Radiation shields, Al	2.0	88.9	0.022	21.4
Vacuum vessel, Al	2.0	88.9	0.022	21.4
Total, X _{tot}			0.103	100

Example: CluTim algorithm

25/06/18