IDEA Drift Gamber: the occupancy "saga" and other considerations

F. Grancagnolo INFN - Lecce

CERN, June 26, 2018

OUTLINE

\square A few facts exploiting cluster counting/timing besides spatial resolution improvement and particle identification (not discussed here).
\square A short clarifying summary of the "occupancy saga".
\square An example (MEG2) of tracking in high occupancy environment.
\square A brief discussion on the drift chamber DAQ and Data Transfer.

A few facts

Ideal case: drift tube
 Digitized signal (1 GHz, 2 GSa/s)

Real case: drift cell

- $t_{i+1}-t_{i} \approx a$ few ns at small $t_{i}, t_{i+1}-t_{i} \approx a$ few $\times 10 \mathrm{~ns}$ at large t_{i}
- $t_{\text {max }}$ constant in ideal case (slightly depends on track angle in drift cell case)
- $\Delta t \leq t_{\text {max }}$, length of digitized signal, depends on impact parameter \mathbf{b} ($\mathrm{t}_{\text {first }}$)
- \mathbf{N}_{cI} depends only on Δt (or \mathbf{b}, or $\mathrm{t}_{\text {first }}$) in cylindrical drift tube case
- \mathbf{N}_{cl} doesn't depend on \mathbf{b} in square drift cell case, but only on the track angle
- $t_{\text {last }}$ constant in the ideal case $=>$ defines the trigger time $t_{0}=t_{\text {last }}-t_{\text {max }}$

25/06/18

A few facts (7 mm cell, faster gas)

Consideration about occupancy

- Average drift signal duration: $\langle\Delta t\rangle=\mathrm{t}_{\max } / 2$ (slightly larger given the time compression at small impact parameters) and $<\mathrm{t}_{\text {first }}>=\mathrm{t}_{0}+\mathrm{t}_{\text {max }} / 2$.
- A peak in the signal is identified as an electron if above threshold and with proper rise and fall times.
- A physical hit must contain at least a few electron peaks spaced by no more than the cluster separation time, $\bar{\delta} \mathrm{t}_{\mathrm{cl}}$.
- An isolated electron peak is suppressed if its time differs from $\mathrm{t}_{\text {first }}$ of the track hit by $>\delta \mathrm{t}_{\mathrm{cl}}$. Otherwise, it slightly affects the impact parameter and negligibly the particle identification.
- Two synchronous tracks overlapping in the same cell are indistinguishable, the promptest one defines the impact parameter.
- Two tracks delayed in time (i.e., belonging to different BX) can be separated if $t_{\text {last }}$ of the earlier one and $t_{\text {first }}$ of the later one differ by $>\delta t_{\mathrm{cl}}$.

Consideration about occupancy

0. In the case of 20 ns inter-bunch crossing time (at 91 GeV) and 400 ns maximum drift time, assuming that the hits are all from ionisation track segments and not from isolated Compton electrons from photons, it would be straightforward to integrate the occupancy over 20 BX .

- However,
- hits associated to $B X_{i}$ and $B X_{j}$ are separated in time and will not contribute to the occupancy if ($\mathrm{i}-\mathrm{j}$) $\times 20 \mathrm{~ns} \geq \delta \mathrm{t}_{\mathrm{cl}}$.
- assuming conservatively $\boldsymbol{\delta} \mathrm{t}_{\mathrm{cl}} \approx 100 \mathrm{~ns}$, the occupancy must be integrated over $\mathbf{4 B X}$ at most.

Consideration about occupancy

MEG2 DCH high occupancy

spatial resolution on 7 mm cell

25/06/18

F.Grancagnolo - IDEA DC: A few facts
signal
track
michel
tracks

MEG2 DCH Performance

Data Transfer: Example

Running conditions

- 91 GeV c.m. energy
- 200 KHz trigger rate
- 100 KHz Z decays
- $30 \mathrm{KHz} \mathrm{Yy} \rightarrow$ hadrons
- 50 KHz Bhabha
- 20 KHz beam backgrounds
D.C. operating conditions
- drift cells: 56,000, layers: 112
- max drift time ($\approx 1 \mathrm{~cm}$): 400 ns
- cluster density: 20/cm
- gas gain: 6×10^{5}
- single e^{-}p.h.: 6 mV
- r.m.s. electronics noise: 1 mV
- e^{-}threshold: $2 \mathbf{m V}$; rise time 1 ns
- signal digitization:

12 bits at 2×10^{9} bytes/s

Example: traditional data transfer

- Z decays:
10^{5} events $/ \mathrm{s} \times 20$ tracks/event $\times 130$ cells/track $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9}$ bytes $/$ cell/s $\cong 200 \mathrm{~Gb} / \mathrm{s}$
- $\mathrm{YY} \rightarrow$ hadrons:
3×10^{4} events $/ \mathrm{s} \times 10$ tracks/event $\times 130$ cells/track $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9}$ bytes/cell/s $\cong 30 \mathrm{~Gb} / \mathrm{s}$
- Bhabha:
5×10^{4} events $/ \mathrm{s} \times 2$ tracks/event $\times 0$ cells/track $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9}$ bytes/cell/s $\cong 0 \mathrm{~Gb} / \mathrm{s}$
- Beam noise (assume 2.5\% occupancy):
2×10^{4} events/s $\times 1.5 \times 10^{3}$ cells/event $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9} \mathrm{bytes} / \mathrm{cell} / \mathrm{s} \cong 25 \mathrm{~Gb} / \mathrm{s}$
Isolated peaks (assume 2.5\% occupancy):
2×10^{5} events/s $\times 1.5 \times 10^{3}$ cells/event $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9}$ bytes/cell/s $\cong 250 \mathrm{~Gb} / \mathrm{s}$
Transferring all digitized data (reading both ends of wires):

$\geq 1 \mathrm{~TB} / \mathrm{s}$!

Examplet the solution

The solution consists in transferring, for each hit drift cell, instead of the full spectrum of the signal, only the minimal information relevant to the application of the cluster timing/counting techniques, i.e. the amplitude and the arrival time of each peak associated with each individual ionisation electron.

This is accomplished by using a FPGA for the real time analysis of the data generated by the drift chamber and successively digitized by an ADC.
A fast readout algorithm (CluTim) for identifying, in the digitized drift chamber signals, the individual ionization peaks and recording their time and amplitude has been developed as VHDL/Verilog code implemented on a Virtex 6 FPGA, which allows for a maximum input/output clock switching frequency of 710 MHz . The hardware setup includes also a 12 -bit monolithic pipeline sampling ADC at conversion rates of up to 2.0 GSPS.

Example: CluTim algorithm

At the beginning of the signal processing procedure, a counter starts to count providing the timing information related to the signal under scrutiny.
The determination of a peak is done by relating the i -th sampled bin to a number n of preceding bins, where n is related to the rise times of the signal peak. Details of the algorithm can be found in next slide.

the input signal to the ADC, the peaks found, and the values of the auxiliary functions used and of their differences.
Efficicency
The memories are continuously filled as new peaks are found. When a trigger signal occurs at time t_{0}, the reading procedure is enabled and only the data relative to the found peaks in the [$\mathrm{t}_{0} ; \mathrm{t}_{0}+\mathrm{t}_{\text {max }}$] time interval are transferred to an external device

Example: CluTim data transfer

- Z decays:
10^{5} events/s $\times 20$ tracks/event $\times 130$ cells/track $\times 20$ peaks/cell $\times 2$ bytes/peak $\cong 10 \mathrm{~Gb} / \mathrm{s}$
- $\mathrm{Yy} \rightarrow$ hadrons:
3×10^{4} events/s $\times 10$ tracks/event $\times 130$ cells/track $\times 20$ peaks/cell $\times 2$ bytes/peak $\cong 1.6 \mathrm{~Gb} / \mathrm{s}$
- Bhabha:
5×10^{4} events/s $\times 2$ tracks/event $\times 0$ cells/track $\times 20$ peaks/cell $\times 2$ bytes/peak $\cong 0 \mathrm{~Gb} / \mathrm{s}$
- Beam noise (assume 2.5\% occupancy):
2×10^{4} events $/ \mathrm{s} \times 1.5 \times 10^{3}$ cells/event $\times 0$ peaks/cell $\times 2$ bytes/peak $\cong 0 \mathrm{~Gb} / \mathrm{s}$
Isolated peaks (assume 2.5\% occupancy):
2×10^{5} events $/ \mathrm{s} \times 1.5 \times 10^{3}$ cells/event $\times 0$ peaks/cell $\times 2$ bytes/peak $\cong 0 \mathrm{~Gb} / \mathrm{s}$
Transferring only time and amplitude of each electron peak (reading both ends of wires):

Thin solenoid for the CTF detector placed in front of the identification system (option)

Alexey Bragin
Budker Institute of Nuclear Physics, Novosibirsk, Russia

May 2018

Thickness in radiation lengths

Materials	Thickness X, mm	Radiation length $\mathrm{X}_{0} \mathrm{Mm}$	X / X_{0}	Material ratio, \%
SC wire, $\mathrm{NbTi} / \mathrm{Cu}=1 / 1$	0.56	17.7	0.032	31.0
Carbon fibre ($1.5 \mathrm{~g} / \mathrm{cm}^{3}$)	1.5	251	0.006	5.8
Epoxy compound (NB as filler)	1.5	150*	0.010	9.7
Aluminum strips ($2 \times 0.5 \mathrm{~mm}$)	1.0	88.9	0.011	10.7
Radiation shields, AI	2.0	88.9	0.022	21.4
Vacuum vessel, AI	2.0	88.9	0.022	21.4
Total, $\mathrm{X}_{\text {tot }}$			0.103	100

Example: CluTim algorithm

$$
\mathrm{s}_{1}=12 \text { bits sample output }
$$

Sixteen samples $\mathrm{S}_{\mathrm{K}, \mathrm{X}}$ at 125 MHz to the FPGA input.

STEP 1: Of the Sixteen samples $\mathrm{S}_{\mathrm{K}, \mathrm{X}}$, where K is the sample number among those available, and X is the time instant at which they are
present, the functions $\mathrm{D} 1_{\mathrm{K}, \mathrm{X}}$ e D2 $2_{\mathrm{K}, \mathrm{X}}$ are calculated with use of the following equations :
$D 1_{K, X}=\left(\left(2^{*} \mathrm{~S}_{\mathrm{k}, \mathrm{X}}-\mathrm{S}_{\mathrm{K}-1, \mathrm{X}}-\mathrm{S}_{\mathrm{K}-2, \mathrm{X}}\right) / 16\right)^{*} 3$ D2 $\mathrm{K}, \mathrm{X}=\left(\left(2^{*} \mathrm{~S}_{\mathrm{k}, \mathrm{X}}-\mathrm{S}_{\mathrm{K}-2, \mathrm{X}}-\mathrm{S}_{\mathrm{K}-3, \mathrm{X}}\right) / 16\right)^{*} 5$

STEP 2: The values of D1 ${ }_{K, X}$ and $\mathrm{D} 2_{\mathrm{K} X}$ and the differences between $\mathrm{D} 1_{\mathrm{K}, \mathrm{X}}$ and $\mathrm{D} 1_{\mathrm{K}-1, \mathrm{X}}$ and between $\mathrm{D} 2_{\mathrm{K}, \mathrm{X}}$ and $\mathrm{D} 2_{\mathrm{K}-1, \mathrm{X}}$ are compared with the thresholds proportional to the level of noise present in the input signal.

STEP 3: In order to transfer the data in memory, the last step before
being sent to an external device is to check that there are no adjacent peaks

Input signal to the ADC, peaks found, results of the functions D1, D2 and their differences

 G. Chiarello, C. Chiri, G. Cocciolo, A. Corvaglia, F. Grancagnolo, M. Panareo, A. Pepino and G. Tassielli. "The Use of FPGA in Drift
ISBN 978-953-51-3208-0, Print ISBN 978-953-51-3207-3, Publ.: May 31, 2017 doi:10.5772/66853, http:/dx.doiorg/10.5772/68853

