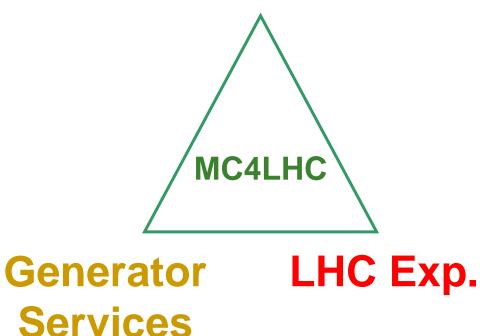
Generator Services planning meeting

Witek Pokorski 20.10.2006


Outline

- Introduction
- Review of the Mandate
- Tasks
 - Proposed changes
- Proposed Milestones
- Manpower
- Meetings

Introduction

- change of Project
 Leader
- main goals
 - involve all stakeholders in the planning
 - improve communication
 - introduce technical changes to improve the flexibility of Generator Services

The present meeting

- project planning and progress monitoring meeting
 - decision taking
- composition
 - representatives of all stakeholders
 - suggestions welcome concerning other participants
- minutes
 - circulate first privately and then post on the web
 - will serve as the main project planning document
- frequency of meetings: every 6 months

Original Mandate (RTAG recommendations)

- 1. Well-maintained common repositories of MC code
- 2. Common interface for events to OO code and the use of "universal" particle tables
 - The choices have converged to HepMC and possibly HepPDT
- 3. Common event files for special purposes
- 4. The development of a common validation tool/test suite, in collaboration with the Tevatron experiments

Mandate discussion (1/4)

- to provide repository of validated Monte Carlo generators of interest to the LHC experiments
 - list of supported generators shall be provided by the LHC experiments
- to provide libraries for all supported platforms
 - list of supported platforms shall be provided by LCG Architects Forum

Mandate discussion(2/4)

- OO event record needed to interface to MC simulation toolkits
- HepMC already chosen by ATLAS, LHCb and CMS
 - support needed to be moved to LCG
- HepPDT still under discussion
 - agreement on the general idea
 - several points (decay information, etc) difficult to handle properly

Mandate discussion(3/4)

- simulation of some events is resource consuming
 - database to share those events was thought to be a good idea
- standards needed for event format and metainformation concerning generation
- contents of the MC database shall be driven by experiments requests

Mandate discussion(4/4)

- vital to have validation of the generators code
- set of basic tests shall be performed before each release
- the outcome shall be transmitted to the authors
- more sophisticated physics validation could also be envisaged

Review of the mandate

- based on the feedback from the experiments and from the authors, the project should continue under its original mandate
 - priorities should be re-discussed and agreed upon
 - the scope can be refined taking into account the experience so far
 - additional tasks can be proposed
- the project needs transparent planning and improved communication

Roles and expectations

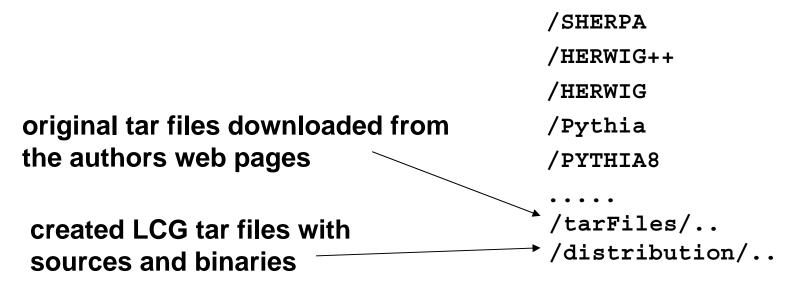
Stakeholder	Role	Expectations		
Authors	Develop and test generator code	Level 1 user-support and porting to different platforms will be off-loaded		
		LHC experiments requirements will be gathered and prioritized Will get validation and feedback from users		
Experiments	Run generators and check physics Provide requirements, submit bug reports	Will get prompt releases of all used generators on all LCG supported platforms Will get validated generators		
Generator Services	CesConsolidate requirements, deliver prompt releases, provide Level 1 support, validation and porting, manage project planWill get requirements and bug reports from experiments Will get responses to feedback and requests			
MC4LHC	Monitor Generator Services Will get coordinated Organize MC4LHC workshops development of MC generators for LHC for LHC			

Proposed project work packages

- generator libraries
 repository [GENSER]
- testing and validation of generators [VALIDATION]
- first level support [SUPPORT]
- event record and particle properties [HEPMC]
- event database[MCDB]

- status
- problems/feedback
- proposed actions/ changes

Generator libraries repository


- generators are collected in GENSER package
 - used by the experiments
 - □ ~ 90 generators and versions available on 3 platforms
 - list of generators needs to be reviewed and prioritized
- modularity needs to be improved
 - multiple versions of generators usually not required by single experiment
 - quick new releases of individual generators are often required by experiments
- build system (SCRAM) constraining the project in particular concerning inclusion of new C++ generators

Proposal for new GENSER structure

- move away from SCRAM
- move away from monolithic GENSER library
- use native build methods/systems provided by the generators' authors
- avoid any modification of the original directory structure of the generators
 - if any adaptation needed communicate to authors
- release generators independently following closely the releases from the authors

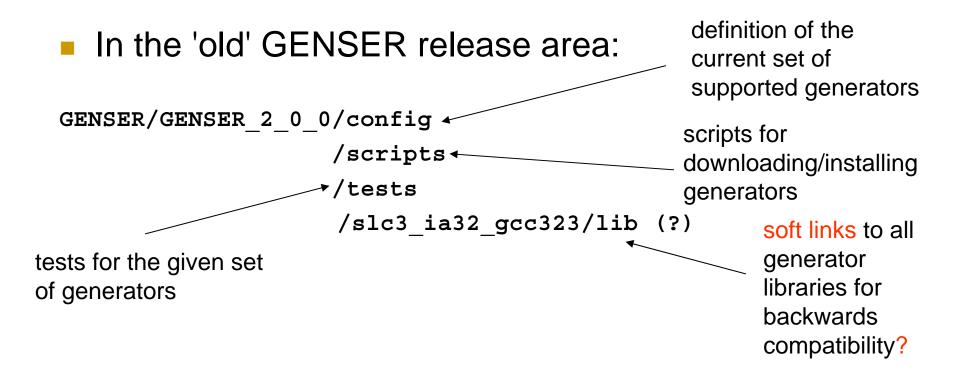
/afs/cern.ch/sw/lcg/external/MCGenerators

 generators released in 'lcg/external' in MCGenerators directory
 NO GENSER_X_Y_Z directory there

New GENSER structure (2/3)

for each package we have version directories SHERPA/SHERPA-MC-1.0.8

/SHERPA-MC-X.Y.Z /.... Pythia/6.406 Pythia/6.500


• • •

 for each version we have source directory and platform directories

SHERPA/SHERPA-MC-1.0.8/src/.....(original source tree) SHERPA/SHERPA-MC-1.0.8/slc3_ia32_gcc323/lib/... SHERPA/SHERPA-MC-1.0.8/slc3_ia32_gcc323/include/...

• • •

IMPORTANT: no generators code here

Generators list review (1/2)

pythia	6_227	herwig 6_50	08	jimmy	4_1	hydjet	1_0
pythia				jimmy		hydjet	1_1
	6_227.2		08.2		4_2	hepmc	 1 27 02
pythia	6_323	herwig 6_51	10	jimmy	4_2.2	hepmc	2 00 00
pythia	6_323.2	herwig 6_51	10.2	phojet	1_10	pythia8	
pythia	6_326	isajet 7_69	Э	toprex	409	pythia8	
pythia	6_326.2	isajet 7_69	9.2	toprex	421	pythia8	053s
pythia	6_327	isajet 7_71	1	tauola	27	pythia8	
pythia	6_327.2	isajet 7_71	1.2	tauola	27.121	pythia8	
pythia	6_400	isajet 7_74	1	tauola	27.121.2	ThePEG ThePEG	2006_01_31 1 0
pythia	6_400.2	isajet 7_74	1.2	cascade	1_2_10		+_0 + 2 0beta2
pythia	6_402	photos 209			is 1_001	Herwig++ 2_0_0	
pythia	6_402.2	photos 209.	.2		is 1_002	helac	elac 0_1_0
pythia	6_403	photos 215			is 1_003 gs 2_2_10	alpgen	
pythia	6 403.2	photos 215.	.2		gs 2_2_10 gs 2_3_1	alpgen madgraph	2_0_6
pythia	6 404	evtgenlhc 1	2		gs 2_3_2	mcatnlo	231
pythia	6 404.2	evtgenlhc 1	3	feynhigg	gs 2_4_1	mcatnlo	3 1 0
pythia	6_405	glauber_xs 1	_	stagen	1_07	MCatNLO	
pythia	_ 6 405.2	hijing 1_38		lhapdf	4_2	comphep	-
pythia	6_406	hijing 1_38		lhapdf lhapdf	4_2.1 5_0_0	comphep	4.4.0
pythia	6 406.2	hijing 1 38		lhapdf	5_0_0 5_1	tests tests	1_01 1 02
herwig	6_507		33b.2	lhapdf	5_2_1	sherpa	1.0.5
-	—			lhapdf	5_2_2	sherpa	1.0.6
herwig	6_507.2	hijing 1_38	33bs.2	pyquen	1_0	_	
				pyquen	1 1	sherpa	1.0.8
					_		

Generator list review (2/2)

- the present list of supported generators is large
 - proposal to review the list
 - prioritization is needed
 - two levels of priority could be introduced
 - high priority
 - normal priority
 - issues with high priority generators would be addressed before the ones with normal priority generators

expecting input from experiments

GENSER release cycle

proposal of two concurrent release cycles

- 'continuous' releases of individual generators following availability from the authors
 - in external/MCGenerators
- global releases of tested and validated sets of generators with complete documentation twice(?) a year
 - Iabeled as GENSER_2_X_Y

GENSER CVS

- no need for GENSER CVS to contain (duplicate) source of all supported generators
 - it will contain
 - tests
 - eventual LHC-specific patches for different generators
 - management scripts
- dedicated CVS can be offered to individual generators
 - HepForge plays that role
 - mirror HepForge CVS at CERN?

Generators testing and validation

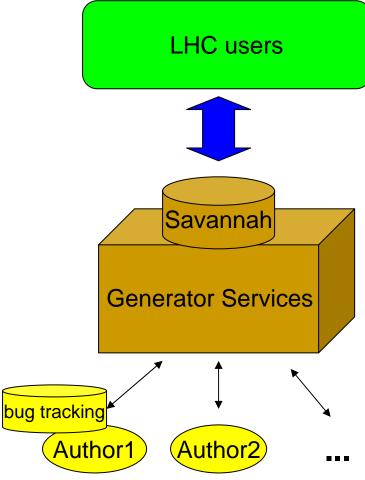
- see list of performed tests on next page
 - information not easily accessible
- web page with description of tests and links to output (histograms, etc) is proposed
- requirements needed from experiments and authors for other specific tests
 - list of tests should be circulated and agreed upon
- eventually new package dedicated to validation GENVAL/GENVAL_1_0_0
- JetWeb/CEDAR collaboration needs to be rediscussed (use of HZTOOL, Rivet, etc)
 - suggestions welcome

Current GENSER tests (1/2)

- pythia 1 Cross section of Z + jet with lower Qt cut 20 GeV
- pythia 2 Fraction of events from Z + jet (Z -> all leptons) with 2 detectable electrons or muons and 2 jets.
- pythia 3 Same as pythia 1,2 (using HepMC/PythiaWrapper.h and event
- pythia 4 analyzers from libtests*, see ../include/ANNHEPMC/)
- pythia 5-26 Cross section of single W+- production is calculated using various proton PDF sets via LHAPDF library.
- photos 1 Fraction of events Z'->e+e- with at least one detectable gamma as simulated by PYTHIA with QED corr. on (no photos in fact)
- photos 2 Fraction of events Z'->e+e- with at least one detectable gamma as simulated by PYTHIA(QED off) + PHOTOS
- herwig 1 Cross section of Z + jet (Z -> all leptons)
- herwig 2 Fraction of events from Z + jet (Z -> all leptons) with 2 detectable electrons or muons and 2 jets.
- herwig 3 Same as 1,2 above but with Z->e,mu
- herwig 4 and using HepMC. (see ./herwig_hepmc.cc)
- herwig 5-26 Cross section of single W+- production is calculated using various proton PDF sets via LHAPDF library.
- Herwig++ 1 Cross section of the default process as run with LHC.in In the version 2_0_0 the default process is qq2gZ2ff (note that it was different in earlier versions)
- isajet 1-24 cross section of single W production (Drell-Yan) at LHC for different PDF sets of lhapdf (same as pythia-lhapdf)

Current GENSER tests(2/2)

evtgenlhc 1In Dalitz decay: average invariant mass of particles 1 and 2evtgenlhc 2In Dalitz decay: average invariant mass of particles 2 and 3


- lhapdf 1-20 PDF sets values with self-explanatory comments
 lhapdf 21-40 PDF sets values obtained using lhaglue with self-explanatory
 comments
- tauola 1 E(PI+- + K+- + A1+-) / E(TAU) ratio in f + fbar -> Z0 + W+/- with Z0 -> tau+ tau- and W+/- -> tau+/- nutau with TAU decayed BY PYTHIA (no tauola) tauola 2 E(PI+- + K+- + A1+-) / E(TAU) as above TAU decayed by TAUOLA
- pythia8 1Do the same as pythia tests 1 and 2. Note that for newpythia8 2versions one could need to change the code of the testsince now part of parameters are set in Fortran part of pythia.
- pyquen 1 Mean mult. in QCD jets events simulated by PYTHIA (no PYQUEN)
- pyquen 2 Mean |Eta| in QCD jets events simulated by PYTHIA (no PYQUEN)
- pyquen 3 Mean Pt in QCD jets events simulated by PYTHIA (no PYQUEN)
- pyquen 4 Mean mult. in QCD jets events simulated by PYTHIA PYQUEN
- pyquen 5 Mean |Eta| in QCD jets events simulated by PYTHIA PYQUEN
- pyquen 6 Mean Pt in QCD jets events simulated by PYTHIA PYQUEN
- toprex 1 cross section of the tW-channel single top production
- alpgen 1 Cross section of Z + 2jets with lower Pt cut 20 GeV
- alpgen 2 Fraction of events from Z + 2jets (Z -> electrons) with
 - 2 detectable electrons and 2 jets. (alpgen + pythia)

Event record and particle properties

- HepMC has been adopted by LCG Generator Services
 - requirements from experiments are collected and transmitted to the maintainer (L.Garren)
 - new releases are made with appropriate changes
 - converged to a single version
 - no more in CLHEP
 - latest version standalone (independent of CLHEP)
 - HepPDT needs further discussion
 - initial interest from CMS

First level support and communication (1/3)

- so far insufficient
- new Generator Services
 Savannah portal
 - http://savannah.cern.ch/projects /genser/
 - experiments are encouraged to report all the problems there
 - Generator Services team will provide 1-level support

First level support and communication (2/3)

- Generator Services will filter reports from experiments
 - only those which cannot be handled by Generator Services will be forwarded to the authors
 - relevant bug reports will be forwarded with no delay
- dedicated Savannah portals can be offered to individual generators
 - will facilitate bug tracking
 - will eliminate multiple reports (emails) concerning the same problem

First level support and communication (3/3)

- web page requires improvement
 - http://lcgapp.cern.ch/project/simu/generator/
 - first changes implemented
 - list of available generators with links
 - information about validation and testing needs to be added
- proposal of organization of tutorials on specific Monte Carlo generators
 - done by the authors
 - addressed to individual experiments

Events database (1/2)

- MCDB ready to use
 - http://mcdb.cern.ch
 - LCG MCDB developed as successor of CMS MCDB
 - Features: Web interface, database, search engine, CASTOR as native storage, Grid compatible
 - CMS is migrating to LCG MCDB
 - development of HepML started by MCDB in collaboration with CEDAR
 - standard format for metadata and physics information
 - important part of standard API to collaboration software

Events database (2/2)

- little interest in MCDB expressed so far from other experiments
- new developments in MCDB (motivated by ATLAS feedback)
 - presentation before the end of the year
- HepML needs further development to be used in MCDB
- re-evaluate the interest from ATLAS and other experiments

Proposed milestones

GENSER_1	27/10/2006	revise the list of supported generators	
GENSER_2	20/12/2006	move the supported generators to the new structure (including SHERPA)	
GENSER_3	30/04/2007	include new versions of supported generators	
VALIDATION_1	20/11/2006	prepare a list of test/validation	
VALIDATION_2	30/04/2007	implement new tests	
SUPPORT_1	01/11/2006	setup Savannah portal for Generator Services and advertise it to experiments	
MCDB_1	30/11/2006	complete the MCDB documentation	
MCDB_2	22/12/2006	present new development in MCDB to experiments and get concrete feedback concerning the use of MCDB	
HEPMC_1	22/12/2006	HepMC2 testing and feedback from experiments	

Manpower

- W.Pokorski 0.5FTE (0.7FTE in the initial phase)
 - Project Leader, GENSER, validation
- until end 2006:
 - M.Kirsanov + O.Zenin (1FTE*2.5 months)
 - GENSER, validation
 - L.Dudko + S.Belov + A.Klimov (1FTE*4.8 months)
 - MCDB, HepML
 - L.Garren (FERMILAB contribution)
 - HepMC, HepPDT
- Planning for next year should reflect agreed priorities

Meetings

- continuation of the Generator Services monthly meetings
 - ~21 November
 - report on new GENSER structure
 - **...**
 - □ ~19 December
 - report on MCDB discussion with experiments
 - ...
- next planning meeting in ~ 6 months

Summary

- mandate reviewed
- project work packages revisited
 - GENSER
 - Validation
 - HepMC/HepPDT
 - User support
 - MCDB
- experiments should provide
 - list of required generators (high/normal priority)
 - list of tests/validation
 - feedback on MCDB
- authors should provide
 - list of tests/validation