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1 Introduction3

The reconstruction of jets is a central element in high energy physics collider experiments.4

Recently several studies using simplified simulation made first studies on using deep neural5

networks (DNNs) to identify (tag) the particle that caused a jet. Some used the analogy of the6

calorimeter cells to pixels in photographs to apply convolutional or dense networks that are7

often used for photo labeling [1–4]. The results were mixed, ranging from some improvement8

to no improvements with respect to established methods. Also recurrent neural networks were9

proposed [5, 6]. CMS and ATLAS released public documents [7, 8] on applying DNNs in con-10

text of flavour tagging and in CMS the default flavour tagger is derived from a DNN, that, for11

the first time, showed the gain in performance in real data for a real detector.12

In this note we present results of using new DNN structures in the context of jet tagging and13

regression for jets with radii of 0.4 and 0.8, which are the default jets in CMS. In section 2, we14

discuss the samples used for to train the different tagger, the input variables (we from now15

on use the machine learning term: features) used for the tagging (classification), the generator16

level truth of the different particles ID (in the following we call these labels), e.g. B-hadron,17

and finally the pre-processing applied to the raw features. Section 3 describes the DNN archi-18

tectures chosen for AK4 and AK8. Finally, in section 4, we show the results compared to the19

standard tools in CMS.20

2 The setup for DNN training21

2.1 Training samples for slim jets22

For the training of AK4 jets we use the QCD and tt samples listed in table 1. The generator23

used for tt is POWHEGv1.0 [9–13] generators were used. Showering and hadronization is done24

by the PYTHIA 8.2 package [14] and the detector simulation by the GEANT4 [15] package. QCD25

is done with PYTHIA only. All samples are with simulated using phase1 detector design. After26

a pres-election, which reduces the gluon jets we altogether have about 80M jets for training,27

testing and validation.28

The samples used for the training of the AK8 jets are listed in table 2. We are currently using29

2016 samples which have much larger statistics than the available PhaseI 2017 MC samples30

(training a DNN using samples with limited number of simulated events can impact the per-31

formance).32
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2.2 Labeling 3

2.2 Labeling33

We define the labeling in major and minor labels. The major labels define a broader category of34

jets, e.g. jets with at least one B hadron. The minor labels are a further sub-division of the major35

labels, e.g. jets with two or more B hadrons. All major labels with respect to all other major36

labels and all minor labels with respect to all other minor labels are orthogonal. The major label37

are the sum of their sub-labels.38

39

2.2.1 Slim jet labels40

Heavy flavor hadrons, scaled to negligible transverse momentum in order not to impact the41

final properties of the jet, are added to the list of stable particles to be clustered by the AK4 jet42

algorithm. Jets containing one or more heavy flavor objects in its constituents are assigned one43

of the major heavy flavor labels, which than are further sub-dived to minor labels to separate44

different decays or the number of heavy flavour hadrons in a jet. Jets not containing any clus-45

tered heavy-flavor hadron are labeled according to the flavor of the hardest (maximum trans-46

verse momentum) parton with PYTHIA 8 status = 23, assigning either the light quark47

or the gluon labels. This labeling of light quarks or gluons is following the “physics def-48

inition” as defined in [16]. Jets with no heavy-flavor hadron clustered among the constituents,49

but with a heavy-flavor quark as hardest parton, are considered undefined and excluded from50

the training and evaluation procedure. This is a limitation of the miniAOD data format used to51

extract the dataset. A summary of all major and minor label is shown in table 3

Table 3: The three major flavour label and the sub division of each of these flavour in even more
detailed label. The sum of all minor (sub) labels is equivalent to the major label.

Major label Minor (sub-)label
B, bb, two ore more B hadrons

≥ 1 B hadron blep, exactly one B hadron with leptonic decay
b, exactly one B hadronic hadronic decay

C, cc, two or more C hadrons
≥ 1 C hadron and no B hadron c, exactly one C hadron

L, uds, physics definition [16]
None of the above and parton matched g, physics definition [16]

52

2.2.2 AK8 labels53

The multi-classification (top, H, Z and W tagging) approach followed for the AK8 jets requires54

mutually exclusive labelling. Priority is given to the hadronically decaying heavy objects (i.e.55

top, H, Z, W). The generated heavy object, X, and its decay products, Xdecay are matched to56

the AK8 jet following the conditions: ∆R(X, AK8) < 0.6 and ∆R(Xdecay, AK8) < 0.6.Then57

AK8 jets with heavy flavor content are identified following the BTV-style. The remaining jets58

are identified as light quarks/gluons. The proposed labelling is summarized in table 4 and is59

designed to have high granularity. The various labels can be easier combined. We therefore60

two differnt kind of labels, “major” and “minor”, to target the different analysis needs. We61

consider AK8 jets with transverse momentum, pT, greater than 300 GeV.62

The proposal described above is currently pending approval from the relevant CMS sub-groups.63

For the results shown in this version of the note we follow a simplified approach presented in64

5.65
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Table 4: Summary of the various labels proposed for the classification of the AK8 jets.
Major label minor label

t

bcq
bqq
bc
bq

W
cq
qq

Z
bb
cc
qq

H

bb
cc
qq
qqqq

QCD

bb
b
q
g

Table 5: Summary of the labelling used for the results presented in the current version of the
note for the classification of the AK8 jets. qX refers to the quarks from the hadronic decay of the
boson X.

Major label Requirement
t ∆R(b, AK8) < 0.8 and ∆R(qW, AK8) < 0.8

W
if W is from t decay: ∆R(b, AK8) > 0.8 and ∆R(qW, AK8) < 0.8
else: ∆R(qW, AK8) < 0.8

Z ∆R(qZ, AK8) < 0.8
H ∆R(qH, AK8) < 0.8

QCD anything else

2.3 Preprocessing66

Before the input variables are feed into the neural networks for the training or the evaluation67

of a trained model, they are subject to a preprocessing. Goal of the preprocessing is to avoid68

inputs to the neural network with significantly different scales or unintended biases as this69

leads to easier convergence of the minimization.70

2.3.1 Slim jet preprocessing71

The scales are unified using the mean < x > and the standard deviation σx of each feature x
which is rescaled to

xI =
x− < x >

σx
. (1)

The pT and η of each jet are direct input to the neural network, such that the evaluation of72

the input features can be adjusted according to the jet kinematics. However, the kinematics of73

jets originating from a different parton flavours show partially significant deviations from each74

other. In consequence the neural network could learn to assign a jet flavour purely based on75
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the pT and η of the jet. To avoid such biases, jets are removed from the training sample, such76

that their pT and η distributions agree for all jet flavours. As reference pT and η shape we use77

the shape of the b-jets, i.e. finally the other labels will have all the b-jet shape. In addition we78

remove 50% of the gluons in order to avoid a gluon dominated training dataset. The probabil-79

ities to remove a jet are calculated based on the entire training sample to minimise the impact80

of statistical fluctuations.81

In case a feature is missing we put in default values, that are not far from the normalized scale82

and are not overlapping with the core distribution.83

84

2.3.2 AK8 preprocessing85

The input variables for AK8 tagging are preprocessed in a similar way as in AK4 tagging. Each
input variable x is transformed according to Eq. (2.3.2),

xI =
x− p50%

p84% − p50%
, (2)

where p50% and p84% are the 50th and 84th percentiles of the variable x. In the case when86

p84% = p50% (which happens for some discrete variables), the denominator is taken to be 1. The87

use of percentiles instead of the mean and the standard deviation tends to be less sensitive to88

outliers and distributions with long tails, leading to more unified scales for different variables.89

The transformed values are further clipped to be in the range of [−5, 5] before feeding into the90

neural networks, which are found to help improve the stability of neural network training.91

To avoid biases from the difference in the jet pT spectrum, jets in the training sample are92

reweighted to have a flat distribution in pT, and the contribution of each source (top, W, Z,93

Higgs, and QCD) is equalized. However, from our studies we found that applying weights to94

the neural network training often causes degradation of performance or even failure in con-95

vergence. As a result, the reweighting is done “on-the-fly” by randomly sampling the training96

dataset according to the “flattening” weights, thus effectively achieves the reweighting without97

losing statistics.98

For evaluating the performance, jets in the testing sample are reweighted such that different99

signal processes (top, W, Z, Higgs) all have the same pT spectrum as the background process100

(QCD).101

2.4 Input features102

The basis for the taggers are the Particle Flow [17] jet constituents (particle candidates), namely103

charged and neutral PF candidates as well as reconstructed secondary vertices within the jet.104

2.4.1 slim jet input features105

For the DeepFlavour tagger, several features of the jet constituents and of secondary vertices106

within a cone of ∆R = 0.4 with respect to the jet axis are used. In some cases, their variation is107

restricted to a reasonable range to avoid large outliers e.g. due to mis-measurements having a108

strong effect on the training without providing any discrimination power. In addition, partic-109

ular inputs are shifted by a constant offset, such that 0 corresponds to a value that is outside of110

the bulk of the distribution and provides no handle on the flavour separation. For the charged111

PF candidates, the majority of the input features are calculated following previous b-tagging112

algorithms [18]. These are in the following indicated as BTV features and their exact definition113

can be found in the reference [18]. The additional variables are described in the following.114
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• pT(j): jet pT115

• η(j): jet η116

• NcPF: number of charged PF candidates within the jet117

• NnPF: number of neutral PF candidates within the jet118

• NSV : number of secondary vertices within the jet119

• NPV : number of primary vertices in the event120

• pT(cPF)/pT(j): relative pT of a charged jet constituent with respect to the jet pT121

• pT(nPF)/pT(j): relative pT of a neutral jet constituent with respect to the jet pT122

• ∆Rm(cPF, SV): ∆R of charged candidate and closest secondary vertex within the jet123

• ∆Rm(nPF, SV): ∆R of neutral candidate and closest secondary vertex within the jet124

• VTXass: flags indicating whether the charged particle track is used in the primary125

vertex fit, includes steps from low purity to high purity requirements.126

• fromPV: similar to VTXass, but partially including information about the primary127

vertex fit quality. Can indirectly include lepton information128

• wp(cPF): weight assigned to the charged particle by the PUPPI [19] algorithm129

• wp(nPF): weight assigned to the neutral particle by the PUPPI algorithm130

• χ2: charged PF candidate track χ2
131

• quality: flag that indicates the charged particle track reconstruction quality, from132

passing low purity to high purity requirements133

• ∆R(cPF): ∆R to jet axis of a charged candidate134

• ∆R(nPF): ∆R to jet axis of a neutral candidate135

• isGamma: flag whether a neutral candidate passes loose photon identification re-136

quirements137

• hadFrac: fraction of energy deposits in the hadronic calorimeter, only for neutral138

candidates139

• pT(SV): secondary vertex pT140

• ∆R(SV): ∆R between jet axis and secondary vertex flight direction141

• mSV : invariant mass of reconstructed secondary vertex142

• Ntracks(SV): number of tracks associated to the secondary vertex143

• χ2(SV): secondary vertex χ2
144

• χ2
n(SV): secondary vertex χ2 normalised to degrees of freedom145

• dxy(SV): transverse impact parameter of secondary vertex146

• Sxy(SV): transverse impact parameter significance of secondary vertex147

• d3D(SV): 3D impact parameter of secondary vertex148

• S3D(SV): 3D impact parameter significance of secondary vertex149

• cos θ(SV): cos θ of secondary vertex with respect to primary vertex150

• Erel(SV): ratio of secondary vertex energy with respect to the jet151

All global features with per-jet values that are considered are summarised in Table 6. No offsets,152

upper or lower bounds are applied. These are applied to particular properties or charged and153

neutral PF candidates, and secondary vertices as listed in Tables 7, 8 and 9.154
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Table 6: List of global input features for the AK4 DeepFlavour tagger
feature comment
pT(j)
η(j)
NcPF
NnPF
NSV
NPV
trackSumJetEtRatio BTV
trackSumJetDeltaR BTV
vertexCategory BTV
trackSip2dValAboveCharm BTV
trackSip2dSigAboveCharm BTV
trackSip3dValAboveCharm BTV
trackSip3dSigAboveCharm BTV
jetNSelectedTracks BTV
jetNTracksEtaRel BTV

Table 7: Full list of charged PF candidate features used as input to the DeepFlavour network
for AK4 jets

feature offset lower bound upper bound comment
trackEtaRel - -5 15 BTV
trackPtRel - - 4 BTV
trackPPar - -105 105 BTV
trackDeltaR - -5 5 BTV
trackPParRatio -10 100 - BTV
trackSip2dVal - - 70 BTV
trackSip2dSig - - 4 · 104 BTV
trackSip3dVal - - 105 BTV
trackSip3dSig - - 4 · 104 BTV
trackJetDistVal - -20 1 BTV
trackJetDistSig - -1 105 BTV
pT(cPF)/pT(j) -1 -1 0
∆Rm(cPF, SV) -5 -5 0
fromPV - - -
VTXass - - -
wp(cPF) - - -
χ2 - - -
quality - - -

Table 8: Full list of neutral PF candidate features used as input to the DeepFlavour network for
AK4 jets

feature offset lower bound upper bound
pT(nPF)/pT(j) -1 -1 0
∆Rm(nPF, SV) -5 -5 0
isGamma - - -
hadFrac - - -
∆R(nPF) -0.6 -0.6 0
wp(cPF) - - -
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Table 9: Full list of secondary vertex features used as input to the DeepFlavour network for
AK4 jets

feature offset lower bound upper bound
pT(SV)
∆R(SV) -0.5 -2 0
mSV) - - -
Ntracks(SV) - - -
χ2(SV)
χ2

n(SV) 0 -1000 1000
dxy(SV) - - -
Sxy(SV) - - 800
d3D(SV) - - -
S3D(SV) -2 -2 0
cos θ(SV) - - -
Erel(SV) - - -

The particles and vertices are ordered using a hierarchical sorting algorithm. Charged can-155

didates and secondary vertices are sorted by impact parameter significance. If the charged156

candidate was used in the primary vertex fit, they are appended starting from the lowest157

∆Rm(cPF, SV) value. If no secondary vertex is present within the jet, the particle pT is used158

instead. The latter two sorting requirements are also applied to neutral PF candidates.159
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2.4.2 AK8 input features160

The input features used by AK8 tagging are similar to those used in the AK4 DeepFlavour161

tagger. They are organized into three groups: inclusive (charged and neutral) PF candidates,162

charged PF candidates, and secondary vertices. We take up to 100 inclusive PF candidates,163

sorted in descending pT order, and up to 60 charged PF candidates and up to 5 secondary164

vertices, ordered by impact parameter significance. The full lists of variables used in each165

group are summarized in Table 10 to 12.166

Table 10: Full list of charged PF candidate features used as input to the DeepAK8 network

feature comment
trackEtaRel BTV
trackPtRatio BTV
trackPParRatio BTV
trackSip2dVal BTV
trackSip2dSig BTV
trackSip3dVal BTV
trackSip3dSig BTV
trackJetDistVal BTV
pT(cPF)/pT(j)
Erel(cPF)
∆φ(cPF, j)
∆η(cPF, j)
∆R(cPF, j)
∆Rm(cPF, SV)
∆R(cPF, subjet 1)
∆R(cPF, subjet 2)
χ2

n
quality
dz
Sz
dxy
Sxy
track dptdpt track covariance
track detadeta track covariance
track dphidphi track covariance
track dxydxy track covariance
track dzdz track covariance
track dxydz track covariance
track dphidxy track covariance
track dlambdadz track covariance

3 Deep neural network architectures167

The neural network structure was designed to be able to make good use of the large input we168

give to the neural network. In contrast to previous proposals we use more information per169

particles candidate or vertex. This lead to the special challenge to digest the huge amount of170

input features. In order to not expose the later layer to such a huge amount of features we171

build a reduced set features per particle (or per few particles) candidate or vertex by so called172
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Table 11: Full list of inclusive PF candidate features used as input to the DeepAK8 network

feature
pT(PF)/pT(j)
Erel(PF)
∆φ(PF, j)
∆η(PF, j)
∆R(PF, j)
∆Rm(PF, SV)
∆R(PF, subjet 1)
∆R(PF, subjet 2)
wp(PF)
fHCAL

Table 12: Full list of secondary vertex features used as input to the DeepAK8 network

feature
pT(SV)/pT(j)
Erel(SV)
∆φ(SV, j)
∆η(SV, j)
∆R(SV, j)
pT(SV)
mSV
Ntracks(SV)
χ2

n(SV)
dxy(SV)
Sxy(SV)
d3D(SV)
S3D(SV)
cos θ(SV)
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convolutional layers. Convolutional layers learn a transformation from a typically higher di-173

mensional representation to a lower representation of features, which in our physics jargon174

would be similar to building a few variables from a larger input. This is done simultaneously175

with the overall optimization, i.e. the transformation is trained to be ideal for the classification.176

Convolution networks are very spread in image recognition, where they effectively summarize177

small region of the image and build more useful features than the raw pixels, like edges or178

alike, which than are feed to the following layers. In our case a particle candidate or vertex179

takes the role of such a small region of an image.180

While slim and fat jets share this basic structure in the beginning, we currently use slightly181

different networks structures in the later layers.182

3.1 Slim jet DNN architecture183

The first layers are convolutional layers as explained in the previous paragraph. Figure 1 indi-184

cates the number of layer and nodes for these convolutional layers. To allow non-linearities we185

use up to four convolutional layers. The convolution are done 1x1, i.e. they are applied only to186

individual particle candidates and they only reduce the dimension of the feature per candidate187

or vertex, but are not a summary of several candidates. We use the rectified linear unit (ReLu)188

activation function.189

From convolutional layer we get sequences of features of particle candidates. The sequence190

order is still defined from the input particle candidate (or vertex) sorting. They are sorted by191

displacement significance. The most displaced are the last in the list. In case the particles are192

not displaced and no secondary is in the jet, they are sorted with increasing pT. Exact sort-193

ing details are in 2.4. These sequences are than feed into recurrent neural networks (LSTM)194

and by that compressed to a single vector per sequence, i.e. charged and neutral candidates195

and vertices. When using recurrent networks the ordering is important, thus our underlying196

assumption is that the most displaced (in case of displacement) or the highest pT candidates197

matter the most.198

The output of the recurrent layers is than combined with the global variables, like pT and η.199

This is put into a fully connected neural network with 8 layers. The first layer has 200 nodes200

and the latter 100.Again we use ReLu activation.201

In between the layer we use a dropout of 0.1 and do batch normalization apart for the input202

(layet 0) and output (last layer before loss). For the final layer we use the softmax function as ac-203

tivation and cross entropy as the loss to minimize. For the minimization we use the adam [20]204

optimizer and train for 50 epochs. The workflow was implemented using [21] that relies on205

[22, 23] for the neural network implementation. To check for over-training we use separate206

sample that is not used for training and no over-training was found. The final ROCs curves in207

the results section 4 using another third set of independent samples.208

3.2 DNN AK8209

The task of tagging heavy objects (top, W, Z, Higgs) with AK8 jets is more challenging than b-210

tagging in some aspects. With a larger jet radius, a typical AK8 jet has many more constituent211

particles than AK4 jets. And the interrelationship between theses particles, like the spatial212

pattern and the energy correlation, is more crucial for heavy objects than for b-tagging. Thus,213

a more complex DNN architecture is adopted for AK8 tagging.214

Similar to the DNN model for AK4 tagging, the DNN model for AK8 tagging, as illustrated in215

Fig. 2, first processes inclusive PF candidates, charge PF candidates and SVs separately with216

convolutional neural networks, and then combines outputs from these three networks in a217

fully-connected layer before yielding the final prediction. The network is trained as a whole to218
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Figure 1: DNN architecture illustration. Dropout and batch normalizations are not indicated.
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Figure 2: Illustration of the overall DNN architecture used by AK8 tagging.

Different from the convolutional neural networks in AK4 tagging, where the convolution is220

performed for each individual particle (i.e., “1x1”), the convolution here is performed for each221

adjacent particle triplet (i.e., “3x1”) with overlaps (in CNN jargon, we use a kernel size of222

3 and a stride of 1). Such “3x1” convolutions are stacked on top of each other, thus allow223

the DNN to see the correlation between nearby particles at earlier stages, and to have a more224

global view of the particle correlations at later stages. The design of the convolutional neural225

networks model is largely based on the ResNet model [24], which is one of the state-of-the-art226

model for image recognition. We adapt it to work with one-dimensional particle list instead227

of two-dimensional pictures, but adopt the main structure and all important ingredients such228

as residual connection [25], batch normalization [26], and ReLU [27] activation function. The229

depth of the convolutional network is 14 for inclusive PF candidates and charge PF candidates,230

and 10 for SVs. The filter sizes (i.e., the number of output features) for each convolutional layer231

ranges between 32 to 128.232

The outputs from the three separate convolutional neural networks are combined in a fully-233

connected layer with 512 units, followed a ReLU activation and a DropOut layer with a rate234

of 0.2. We use the softmax function in the final layer to yield the final prediction, and cross235

entropy as the loss function to minimize. The neural network is implemented with the MXNet236
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package [28] and trained with the Adam [20] optimizer with a learning rate of 0.001.237

4 Results in simulation238

We compare the results of the classification for AK4 and AK8 jets to references that are used in239

public analysis in CMS. We use physics sample with label composition and pT and η shapes as240

they come naturally from the samples process in question. We reject jets with undefined labels.241

4.1 AK4 jet results242

For AK4 we use the CVSv2 and DeepCSV b-tagger as reference [18, 29] and for the quark-gluon243

discrimination we compare to [30] and alternative deep neural network structures. Figure 3244

compares by showing the ROC curves the DeepFlavour tagger results to the former default245

CMS tagger CSVv2 and DeepCSV for different processes and pT. For both physics processes,246

tt and QCD we see significant gain in all region of the ROC curves. For very high b-jet pT the247

b-jet efficiency is increased by 50% with respect to the DeepCSV for a light fake rate of 1%.248

At higher pT of jets gluon splitting leads to an increased amount of jets in QCD with two b-249

hadrons inside the jet. In a high pT region we thus show in Figure 4 the efficiency for jets with250

single b-hadron using only the single b and leptonic b labels as discriminator. Identifying single251

bs is slightly more difficult than double bs and the performance is slightly less good. We also252

show the tagging performance for the bb label, using also the bb discriminator and it can be253

seen that separating bb from light jets is easier, as the performance is improved with respect to254

the single b case. The second curve in the double b ROC is the separation of b and bb, using the255

probabilities as binary classifier (binary means here that two estimated propabilities (double b256

and single b) used are renormalized to add up to one, before they are used as discriminator).257

It is interesting that about 1/3 of the jets can be identified as double b with only a fake-rate of258

1% for single bs. Figure 4 also shows the efficiency of leptonic decays of single bs vs the mistag259

rate for light jets and we see a decent separation, just in between the bb and single b case. The260

separation of hadronic and leptonic bs, even using the separation as binary classifier, does not261

lead to good leptonic decay separation. It should be noted that we did not explicitly add lepton262

information to the tagger.263

The c-tagging of DeepJet is compared to DeepCSV in Figure 5. We do see a gain with respect264

to DeepCSV also for c-tagging.265

We defined three working points, which lead to a light jet efficiecy of 10%. 1%, and 0.1% repec-266

tively for jets of the QCD sample in a range from 80 to 120 GeV. Using these working points,267

called loose, medium and tight, we illustrate the dependence of the tagger performance as a268

function of pT. η, and number of primary vertices in Figure 6. We see the expected degradation269

of performance with higher pT and at low , for large η and large number of primary vertices.270

Note that the QCD sample has a relatively flat pT distribution, thus the pT integrated illustra-271

tions are dominated by high pT.272

An overview of the discriminator shapes us given in Figure 7. The discrimunators shown273

in Figure 7 are according to labels that were present in CMS before and methods to estimate274

the data simulation agreement re present. The minor labels of the b-hadron jet major label275

are shown in the appendix Figure A. Especially the double b vs single b separation seems276

promising and it might motivate a dedicated effort to develop methods to also establish these277

discriminators in data in the future.278

Figure 8 and 9 show the comparison of DeepJet quark gluon separation to the default like-279

lihood method for different pT in the central and forward region of the detector, respectively.280

The output of DeepJet was made to a binary classifier to compare to the quark-gluon likelihood281
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the unmodified multi-label propability of the b cathegorie is used. For the double b vs b and
leptonic b decay vs. hadronic the binary classifyers between these cathegories are used.
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Figure 5: ROC curves for C-tagging in tt events using the estimated propabilities as binary
classifier for light jet and c-jet separation.

method, which technically was done by scaling the estimated probabilities for light quarks and282

gluons such that they add up to one. We see constantly a significant improvement of about283

5-10% absolute better efficiency for light quarks compared to likelihood method. Note that284

for this comparison all jets of the QCD sample are taken into account that pass the kinematic285

criteria and where we did find that the label was well defined, i.e. no balance selection of jets286

was applied and instead it was only checked that a parton was found. We also conformed that287

a balance selection as done by other quark gluon taggers did not effect the conclusions, but288

moved all ROCS by a tiny amount towards better tagging.289

We also added as comparison other DNN architectures that should also be able to find jet290

structures, but would be blind to heavy flavour. For these DNNs we use only pT of the candi-291

dates relative to the jet, relative φ, relative η, if the particles are charged or not, and the puppi292

weight. We try two DNN structures, one according to [3], i.e. an image with 22 bins and a293

convolutional DNN. We use relative eta from each particle candidate to define the bin which294

the particle belongs to. For each bin we store the pT sum of the particles with puppi weight295

(we tried both, with and without puppi weights) and the multiplicities of charged and neutral296

particle candidates. Also the exact details of the layer structure are used as in the reference with297

the only difference that we could remove the regularization layers, as we use larger samples.298

Alternatively we also took the list of particles candidates (charged and neutral), with the same299

above mentioned information sorted in descending pT. As for DeepFlavour we use a recurrent300

(LSTM) network followed by several dense layer. We compared these different flavour blind301

neural network structures to DeepFlavour. All three structure give similar results as seen in 8302

and 9.303

Another study we did is the impact of reduced input, i.e. using a few human made variables.304

We gave as input the five variables currently used by the BDT quark gluon effort and added305

pT, η and rho. This made altogether 8 input variables. Again we used a DNN very similar to306

the one of the recommended CMS flavour tagger DeepCSV. Only 15 nodes per layer are used,307

which as for DeepCSV is between 1-2 times the inputs. We used 7 hidden layers. The compari-308

son can be found in 10 and 11. We see a gain by using a full DNN with larger input than only309

the human made variables. The effect varies depending on the pT and η and can be sizable at310

background rejection of around 10%.311

To have an illustrative example on how the multi-classification simplifies real-life tasks, we312

show how one can select light quarks in tt events. traditionally this was quite difficult, as we313

had a tagger to separate gluons and quarks, one to separate b-jets from ”light” jets and yet314

another to separate c-jets from ”light” jets. Finally on would apply cuts on all three taggers or315

even build a meta-tagger based on other taggers output. For DeepJet it is sufficient to just ask316
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Figure 6: Efficiency for B and L in the QCD sample as functions of pT, η and number of primary
verices (npv). To not be dominated by high pT jet in QCD, for the η and npv dependencies only
jets with pT > 30 and < 150 GeV were used. Efficiencies for three working points: loose,
medium and tight are shown.
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Figure 7: The different estimated probabilities for different jet labels as observed in the tt sam-
ple.

for the uds probability. A comparison is shown in Figure 13, where we show how the quark-317

gluon likelihood compares to DeepJet in answering the question if a jet is a uds-jet. While it318

is difficult and often sub-optimal to try to extract a jet label from different standalone taggers,319

it is straight forward to reduce a multiclass tagger to a tagger with only two label by rescaling320

the tagger information as e.g. done in the previous paragraph for the quark-gluon separation.321

322

For the results shown in Figures 8 and 9, the area under the curve is listed in Table 13. In323

addition, the Table shows the efficiency ε to select a light quark for two working points, defined324

by a misidentification probability of 0.2 (loose), 0.1 (medium), or 0.01 (tight). The reference for325

these working points is the QCD sample with p̂T = 80− 120 GeV for central η. The numbers are326

extracted from the same sample and for the sample with .p̂T = 300− 470 GeV The conclusion327

is similar for all p̂T ranges.328

4.2 AK8 jet results329

This section discusses the performance of the classification of the AK8 jets as originating from330

t, H, Z, W, or QCD jet using the DNN structure detailed in Section 3.2. The distributions of331

the individual probabilities as obtained from the DeepAK8 multi-tagger for different cases of332

truth-matched jets are displayed in Fig 15.333

The performance of the DeepAK8 multi-tagger is compared with the performance a boosted334

decision tree (BDT) classifier heavily based on the t and W BDT developed in the all-hadronic335

search for direct stop production [31]. Details about the selection of variables, the training,336

as well as on the performance in MC and data can be found in Section 3.3 and Appendix B337

in [32]. Very briefly the input variables exploit jet kinematics, Nsubjettiness ratios, soft-drop338
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Figure 8: ROC curves in QCD simulation for different pT ranges in the central region (|η| < 1.3).
Compared are the default DeepJet and the recurrent and convolutional approaches.
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Figure 9: ROC curves in QCD simulation for different pT ranges in the forward region (1.3 <
|η| < 2.4). Compared are the default DeepJet and the recurrent and convolutional approaches.
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Figure 10: ROC curves in QCD simulation for different pT ranges in the central region (|η| <
1.3). Compared are the likelihood method, the 8 parameter DNN and the default DeepFlavour.
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Figure 11: ROC curves in QCD simulation for different pT ranges in the forward region
(1.3 < |η| < 2.4). Compared are the likelihood method, the 8 parameter DNN and the de-
fault DeepFlavour.
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Figure 12: ROC curves in tt simulation for pT > 30 GeV in the central (|η| < 1.3) and forward
region (1.3 < |η| < 2.4) for light-quark and gluon separation.
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Figure 13: ROC curves in tt simulation for pT > 30 GeV for light-quark-jets as signal and any
other labeled jet as background.

Table 13: Area under the ROC curve and efficiencies for two selected working points for the
different DNN-based approaches for quark-gluon tagging, evaluated for QCD samples with
different p̂T and jet pT thresholds.

Area under ROC ε(tight) ε(medium) ε(loose)
QCD p̂T = 80− 120 GeV, jet pT > 70 GeV

DeepJet central 0.204 0.17 0.51 0.65
DeepJet forward 0.203 0.15 0.50 0.65
Convolution central 0.211 0.15 0.49 0.64
Convolution forward 0.215 0.13 0.47 0.63
Recurrent central 0.205 0.16 0.51 0.65
Recurrent forward 0.205 0.14 0.49 0.65

QCD p̂T = 300− 470 GeV, jet pT > 250 GeV
DeepJet central 0.193 0.15 0.52 0.68
DeepJet forward 0.201 0.11 0.47 0.65
Convolution central 0.203 0.13 0.50 0.66
Convolution forward 0.214 0.10 0.44 0.62
Recurrent central 0.191 0.15 0.52 0.68
Recurrent forward 0.203 0.10 0.47 0.65
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Figure 14: ROC curves in Pythia 8 QCD simulation for different pT ranges in the full |η| region.
Compared are the default DeepJet, the recurrent and convolutional approaches. Jets matched
to uds quarks are considered light quark jets. Gluon jets are defined by a matching to gluons.
Jets with heavy-flavour hadrons are excluded from the jets considered. This also applies to
gluon splitting to BB and CC.
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(SD) mass, Q/G variables and CSV discriminants of the SD subjets. Given that the DeepAK8339

multi-tagger targets also hadronic decays of the H and Z bosons, to allow for a fair comparison,340

the input variables used by the boosted double-b tagger [33] are also included in the t/W BDT.341

This results to a total of 45 input variables to the BDT. The BDT is retrained using the same342

samples as the DeepAK8 multi-tagger.343

The performance of the DeepAK8 and BDT-based multi-taggers is evaluated in different re-344

gions of the pT of the AK8 jet in terms of receiver operating characteristic (ROC) curves. An345

independent sample (i.e. not the sample used for train or validation) is used to produce the346

ROC curves. The results are displayed in Fig. 16-19. The efficiency of correctly identifying a347

t, H, Z, or W (signal efficiency, x-axis) is always compared against the QCD efficiency (back-348

ground efficiency, y-axis). The DeepAK8 multi-tagger outperforms the BDT multi-tagger in all349

cases. For example in a working point corresponding to a background efficiency of ∼1%, the350

DeepAK8 multi-tagger yields 10-25% larger signal efficiency in all classes.351

One of the advantages of a multi-tagger is that allows separation between different objects. As352

an example, in Fig. 20 we compare the performance of the DeepAK8 and BDT multi-taggers to353

separate W and Z jets. This is a very challenging problem given the similar mass of the two354

bosons. The DeepAK8 multi-tagger shows significantly better performance over a wide range355

of pT.356

Appendix B includes comparison of the performance plots of the DeepAK8 and BDT multi-357

tagger using the samples and matching definitions described in [34]. In addition to the DeepAK8358

and the BDT multi-tagger ROC curves, we include the performance of two “cut-based” work-359

ing points (high and low purity) for each heavy object as described in [35] and [36].360

5 Conclusion361

For cases of our muti taggers we see significant gain with repect the the CMS reconstruction362

defaults taggers in the performance evaluated in simulation by ROC curves. This is true for363

slim jet taggin for heavy flaavours and quark gluon separation as well as for heavy resonances,364

H, top, W, and Z tagging for fat jet. The improvements range from a couple of % to even factors365

of 2 in efficiency gain at some mistag rate. The next step will be study of these gains in real366

data.367
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Figure 15: Distribution of the individual probabilities (DNN output) as obtained from the
DeepAK8 tagger for different cases of truth-matched jets. Each truth-matched case is indicated
on the plot. In this example AK8 jets with pT > 400 GeV are considered.
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Figure 16: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for t jets as signal and
QCD jets as background. The plots correspond to different pT ranges of the AK8 jet. upper:
400 < pT < 500 GeV (left) and 500 < pT < 700 GeV (right), middle: 700 < pT < 900 GeV (left)
and 900 < pT < 1200 GeV (right), lower: 1200 < pT < 1500 GeV (left) and pT > 1500 GeV
(right).
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Figure 17: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for H jets as signal and
QCD jets as background. The plots correspond to different pT ranges of the AK8 jet. upper:
400 < pT < 500 GeV (left) and 500 < pT < 700 GeV (right), middle: 700 < pT < 900 GeV (left)
and 900 < pT < 1200 GeV (right), lower: 1200 < pT < 1500 GeV (left) and pT > 1500 GeV
(right).
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Figure 18: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for Z jets as signal and
QCD jets as background. The plots correspond to different pT ranges of the AK8 jet. upper:
400 < pT < 500 GeV (left) and 500 < pT < 700 GeV (right), middle: 700 < pT < 900 GeV (left)
and 900 < pT < 1200 GeV (right), lower: 1200 < pT < 1500 GeV (left) and pT > 1500 GeV
(right).
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Figure 19: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for W jets as signal and
QCD jets as background. The plots correspond to different pT ranges of the AK8 jet. upper:
400 < pT < 500 GeV (left) and 500 < pT < 700 GeV (right), middle: 700 < pT < 900 GeV (left)
and 900 < pT < 1200 GeV (right), lower: 1200 < pT < 1500 GeV (left) and pT > 1500 GeV
(right).
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Figure 21: Minor b jet labels separately. Note that no direct lepton information is included
in the input. We would not recommend using the separation of leptonic and hadronic single
b-hadron jets at this point for analysis purposes.
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B Performance plots of DeepAK8 multi-tagger using the JMAR456

definition457

Performance plots of the DeepAK8 and BDT multi-tagger, as well as two “Cut based” working458

points (low and high purity) for each heavy objects as defined from the corresponding POGs459

[i.e. JMAR and BTV]. The ROC curves are estimated using the samples and matching definition460

suggested by JMAR. More details in the main text.461
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Figure 22: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for t jets as signal and
QCD jets as background. Two “cut-based” working points (low and high purity) are included
in the plot. The working points are defined by the corresponding POG. The plots correspond to
different pT ranges of the AK8 jet. upper: 400 < pT < 500 GeV (left) and 500 < pT < 700 GeV
(right), middle: 700 < pT < 900 GeV (left) and 900 < pT < 1200 GeV (right), lower: 1200 <
pT < 1500 GeV (left) and pT > 1500 GeV (right).
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Figure 23: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for H jets as signal and
QCD jets as background. Two “cut-based” working points (low and high purity) are included
in the plot. The working points are defined by the corresponding POG. The plots correspond to
different pT ranges of the AK8 jet. upper: 400 < pT < 500 GeV (left) and 500 < pT < 700 GeV
(right), middle: 700 < pT < 900 GeV (left) and 900 < pT < 1200 GeV (right), lower: 1200 <
pT < 1500 GeV (left) and pT > 1500 GeV (right).
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Figure 24: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for Z or W jets as sig-
nal and QCD jets as background. Two “cut-based” working points (low and high purity) are
included in the plot. The working points are defined by the corresponding POG. The plots
correspond to different pT ranges of the AK8 jet. upper: 400 < pT < 500 GeV (left) and
500 < pT < 700 GeV (right), middle: 700 < pT < 900 GeV (left) and 900 < pT < 1200 GeV
(right), lower: 1200 < pT < 1500 GeV (left) and pT > 1500 GeV (right).
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C Additional plots on the DeepAK8 multi-tagger462

C.1 Performance of the DeepAK8 multi-tagger as a function of jet pT, jet η, and463

the number of primary vertices464

Figure 25 to 28 show the performance of the DeepAK8 multi-tagger as a function of jet pT,465

jet η, and the number of primary vertices in the event. We have chosen two working points466

based on the misidentification rate of 10% (loose) and 1% (tight). We focus on the top, W and467

QCD classes of the multi-classifier. The matching definition and the samples used to test the468

performance follow the recommendations from JMAR in [34].469
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Figure 25: Efficiency of tagging truth-matched top quarks as a function of jet pT (left), jet
η(middle) and the number of primary vertices in the event (right).
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Figure 26: Efficiency of tagging truth-matched W bosons as a function of jet pT (left), jet
η(middle) and the number of primary vertices in the event (right).
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Figure 27: Rate of misidentifying QCD jets as top quarks as a function of jet pT (left), jet
η(middle) and the number of primary vertices in the event (right).
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Figure 28: Rate of misidentifying QCD jets as W bosons as a function of jet pT (left), jet
η(middle) and the number of primary vertices in the event (right).
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C.2 Correlation between the DeepAK8 multi-tagger and traditional tagging vari-470

ables471

Figure 29 to 32 show the correlation between the DeepAK8 multi-tagger output with traditional472

jet tagging variables like the N-subjettiness ratios τ21, τ32 and the soft-drop mass. We focus on473

the top, W and QCD classes of the multi-classifier. The matching definition and the samples474

used to test the performance follow the recommendations from JMAR in [34].475
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Figure 29: Correlation between the DNN output of the top class and the N-subjettiness ratio
τ32 (left) and the soft-drop mass MSD (right) in truth-matched top jets.
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Figure 30: Correlation between the DNN output of the top class and the N-subjettiness ratio
τ21 (left) and the soft-drop mass MSD (right) in truth-matched W jets.
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Figure 31: Correlation between the DNN output of the top class and the N-subjettiness ratio
τ32 (left) and the soft-drop mass MSD (right) in QCD jets.
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Figure 32: Correlation between the DNN output of the top class and the N-subjettiness ratio
τ21 (left) and the soft-drop mass MSD (right) in QCD jets.
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C.3 Jet mass distribution476

Figure 33 and 34 show the soft-drop mass of the jets inclusively and after the loose and tight477

working points in truth-matched jets and QCD jets, respectively.478
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Figure 33: Soft-drop mass of the truth-matched jets inclusively (black line), after passing the
loose working point (red line) and after passing the tight working point (blue line). Left: jets
matched to top quarks; Right: jets matched to W bosons.
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Figure 34: Soft-drop mass of the QCD jets inclusively (black line), after passing the loose
working point (red line) and after passing the tight working point (blue line). Left: for top
tagging; Right: for W tagging.
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