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1 Introduction

The reconstruction of jets is a central element in high energy physics collider experiments.
Recently several studies using simplified simulation made first studies on using deep neural
networks (DNNs) to identify (tag) the particle that caused a jet. Some used the analogy of the
calorimeter cells to pixels in photographs to apply convolutional or dense networks that are
often used for photo labeling [1-4]. The results were mixed, ranging from some improvement
to no improvements with respect to established methods. Also recurrent neural networks were
proposed [5, 6]. CMS and ATLAS released public documents [7, 8] on applying DNNs in con-
text of flavour tagging and in CMS the default flavour tagger is derived from a DNN, that, for
the first time, showed the gain in performance in real data for a real detector.

In this note we present results of using new DNN structures in the context of jet tagging and
regression for jets with radii of 0.4 and 0.8, which are the default jets in CMS. In section 2, we
discuss the samples used for to train the different tagger, the input variables (we from now
on use the machine learning term: features) used for the tagging (classification), the generator
level truth of the different particles ID (in the following we call these labels), e.g. B-hadron,
and finally the pre-processing applied to the raw features. Section 3 describes the DNN archi-
tectures chosen for AK4 and AKS. Finally, in section 4, we show the results compared to the
standard tools in CMS.

2 The setup for DNN training

2.1 Training samples for slim jets

For the training of AK4 jets we use the QCD and tt samples listed in table 1. The generator
used for tt is POWHEGV1.0 [9-13] generators were used. Showering and hadronization is done
by the PYTHIA 8.2 package [14] and the detector simulation by the GEANT4 [15] package. QCD
is done with PYTHIA only. All samples are with simulated using phasel detector design. After
a pres-election, which reduces the gluon jets we altogether have about 80M jets for training,
testing and validation.

The samples used for the training of the AKS jets are listed in table 2. We are currently using
2016 samples which have much larger statistics than the available Phasel 2017 MC samples
(training a DNN using samples with limited number of simulated events can impact the per-
formance).
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2.2 Labeling 3

2.2 Labeling

We define the labeling in major and minor labels. The major labels define a broader category of
jets, e.g. jets with at least one B hadron. The minor labels are a further sub-division of the major
labels, e.g. jets with two or more B hadrons. All major labels with respect to all other major
labels and all minor labels with respect to all other minor labels are orthogonal. The major label
are the sum of their sub-labels.

2.2.1 Slim jet labels

Heavy flavor hadrons, scaled to negligible transverse momentum in order not to impact the
final properties of the jet, are added to the list of stable particles to be clustered by the AK4 jet
algorithm. Jets containing one or more heavy flavor objects in its constituents are assigned one
of the major heavy flavor labels, which than are further sub-dived to minor labels to separate
different decays or the number of heavy flavour hadrons in a jet. Jets not containing any clus-
tered heavy-flavor hadron are labeled according to the flavor of the hardest (maximum trans-
verse momentum) parton with PYTHIA 8 status = 23, assigning either the 1ight quark
or the gluon labels. This labeling of 1ight quarks or gluons is following the “physics def-
inition” as defined in [16]. Jets with no heavy-flavor hadron clustered among the constituents,
but with a heavy-flavor quark as hardest parton, are considered undefined and excluded from
the training and evaluation procedure. This is a limitation of the miniAOD data format used to
extract the dataset. A summary of all major and minor label is shown in table 3

Table 3: The three major flavour label and the sub division of each of these flavour in even more
detailed label. The sum of all minor (sub) labels is equivalent to the major label.

Major label \ Minor (sub-)label
B, bb, two ore more B hadrons
> 1B hadron bjep, exactly one B hadron with leptonic decay
b, exactly one B hadronic hadronic decay
C, cc, two or more C hadrons
> 1 C hadron and no B hadron c, exactly one C hadron
L, uds, physics definition [16]
None of the above and parton matched g, physics definition [16]

2.2.2 AKS labels

The multi-classification (top, H, Z and W tagging) approach followed for the AKS8 jets requires
mutually exclusive labelling. Priority is given to the hadronically decaying heavy objects (i.e.
top, H, Z, W). The generated heavy object, X, and its decay products, Xgecay are matched to
the AKS8 jet following the conditions: AR(X,AK8) < 0.6 and AR(Xgecay, AK8) < 0.6.Then
AKS jets with heavy flavor content are identified following the BTV-style. The remaining jets
are identified as light quarks/gluons. The proposed labelling is summarized in table 4 and is
designed to have high granularity. The various labels can be easier combined. We therefore
two differnt kind of labels, “major” and “minor”, to target the different analysis needs. We
consider AKS jets with transverse momentum, pr, greater than 300 GeV.

The proposal described above is currently pending approval from the relevant CMS sub-groups.
For the results shown in this version of the note we follow a simplified approach presented in
5.
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4 2 The setup for DNN training

Table 4: Summary of the various labels proposed for the classification of the AKS jets.
Major label

minor label

bcq
; bqq
bc
bq

W 4
aq
bb

Z cc
99
bb
cc

qq9

9999
bb

b

CD !
< g

Table 5: Summary of the labelling used for the results presented in the current version of the
note for the classification of the AKS8 jets. gx refers to the quarks from the hadronic decay of the
boson X.

Major label | Requirement

t AR (b, AK8) < 0.8 and AR(qw, AKS) < 0.8
if W is from t decay: AR (b, AK8) > 0.8 and AR(qw, AK8) < 0.8

W else: AR(qw, AK8) < 0.8
Z AR(jz, AK8) < 0.8
H AR(q1;, AK8) < 0.8

QCD anything else

2.3 Preprocessing

Before the input variables are feed into the neural networks for the training or the evaluation
of a trained model, they are subject to a preprocessing. Goal of the preprocessing is to avoid
inputs to the neural network with significantly different scales or unintended biases as this
leads to easier convergence of the minimization.

2.3.1 Slim jet preprocessing

The scales are unified using the mean < x > and the standard deviation oy of each feature x

which is rescaled to
;ox—<x>

Ox

X )
The pt and 7 of each jet are direct input to the neural network, such that the evaluation of
the input features can be adjusted according to the jet kinematics. However, the kinematics of
jets originating from a different parton flavours show partially significant deviations from each
other. In consequence the neural network could learn to assign a jet flavour purely based on
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2.4 Input features 5

the pt and 7 of the jet. To avoid such biases, jets are removed from the training sample, such
that their pt and # distributions agree for all jet flavours. As reference pr and # shape we use
the shape of the b-jets, i.e. finally the other labels will have all the b-jet shape. In addition we
remove 50% of the gluons in order to avoid a gluon dominated training dataset. The probabil-
ities to remove a jet are calculated based on the entire training sample to minimise the impact
of statistical fluctuations.

In case a feature is missing we put in default values, that are not far from the normalized scale
and are not overlapping with the core distribution.

2.3.2 AKS preprocessing

The input variables for AK8 tagging are preprocessed in a similar way as in AK4 tagging. Each
input variable x is transformed according to Eq. (2.3.2),

= X — P50% ?)

- 4
P8a% — P50%

where psgy, and pgye, are the 50th and 84th percentiles of the variable x. In the case when
Psas = Pso% (Which happens for some discrete variables), the denominator is taken to be 1. The
use of percentiles instead of the mean and the standard deviation tends to be less sensitive to
outliers and distributions with long tails, leading to more unified scales for different variables.
The transformed values are further clipped to be in the range of [—5, 5| before feeding into the
neural networks, which are found to help improve the stability of neural network training.

To avoid biases from the difference in the jet pt spectrum, jets in the training sample are
reweighted to have a flat distribution in p1, and the contribution of each source (top, W, Z,
Higgs, and QCD) is equalized. However, from our studies we found that applying weights to
the neural network training often causes degradation of performance or even failure in con-
vergence. As a result, the reweighting is done “on-the-fly” by randomly sampling the training
dataset according to the “flattening” weights, thus effectively achieves the reweighting without
losing statistics.

For evaluating the performance, jets in the testing sample are reweighted such that different
signal processes (top, W, Z, Higgs) all have the same pr spectrum as the background process

(QCD).

2.4 Input features

The basis for the taggers are the Particle Flow [17] jet constituents (particle candidates), namely
charged and neutral PF candidates as well as reconstructed secondary vertices within the jet.

2.4.1 slim jet input features

For the DeepFlavour tagger, several features of the jet constituents and of secondary vertices
within a cone of AR = 0.4 with respect to the jet axis are used. In some cases, their variation is
restricted to a reasonable range to avoid large outliers e.g. due to mis-measurements having a
strong effect on the training without providing any discrimination power. In addition, partic-
ular inputs are shifted by a constant offset, such that 0 corresponds to a value that is outside of
the bulk of the distribution and provides no handle on the flavour separation. For the charged
PF candidates, the majority of the input features are calculated following previous b-tagging
algorithms [18]. These are in the following indicated as BTV features and their exact definition
can be found in the reference [18]. The additional variables are described in the following.
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2 The setup for DNN training

pr(j): jet pr

n(j): jetn

Ncpr: number of charged PF candidates within the jet

N,pr: number of neutral PF candidates within the jet

Ngy: number of secondary vertices within the jet

Npy: number of primary vertices in the event

pr(cPF)/p1(j): relative pr of a charged jet constituent with respect to the jet pr
pr(nPF)/pr(j): relative pr of a neutral jet constituent with respect to the jet pr

AR, (cPF,SV): AR of charged candidate and closest secondary vertex within the jet
AR,,(nPF,SV): AR of neutral candidate and closest secondary vertex within the jet

VTXass: flags indicating whether the charged particle track is used in the primary
vertex fit, includes steps from low purity to high purity requirements.

fromPV: similar to VIXass, but partially including information about the primary
vertex fit quality. Can indirectly include lepton information

wy(cPF): weight assigned to the charged particle by the PUPPI [19] algorithm
wy,(nPF): weight assigned to the neutral particle by the PUPPI algorithm

X?: charged PF candidate track x>

quality: flag that indicates the charged particle track reconstruction quality, from
passing low purity to high purity requirements

AR(cPF): AR to jet axis of a charged candidate

AR(nPF): AR to jet axis of a neutral candidate

isGamma: flag whether a neutral candidate passes loose photon identification re-
quirements

hadFrac: fraction of energy deposits in the hadronic calorimeter, only for neutral
candidates

pr(SV): secondary vertex pr

AR(SV): AR between jet axis and secondary vertex flight direction
mgy: invariant mass of reconstructed secondary vertex

Niracks (SV): number of tracks associated to the secondary vertex
X*(SV): secondary vertex x>

x3(SV): secondary vertex x> normalised to degrees of freedom
dyy(SV
Sw/(SV
dsp(SV

)
S3p(SV): 3D impact parameter significance of secondary vertex

): transverse impact parameter of secondary vertex
): transverse impact parameter significance of secondary vertex

3D impact parameter of secondary vertex

cos B(SV): cos 0 of secondary vertex with respect to primary vertex

E,;(SV): ratio of secondary vertex energy with respect to the jet

All global features with per-jet values that are considered are summarised in Table 6. No offsets,
upper or lower bounds are applied. These are applied to particular properties or charged and
neutral PF candidates, and secondary vertices as listed in Tables 7, 8 and 9.
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Table 6: List of global input features for the AK4 DeepFlavour tagger

feature comment
pr(j)

1(j)

Ncpp

NypF

Nsy

Npy

trackSum]JetEtRatio BTV
trackSum]JetDeltaR BTV
vertexCategory BTV
trackSip2dValAboveCharm BTV
trackSip2dSigAboveCharm BTV
trackSip3dValAboveCharm BTV
trackSip3dSigAboveCharm BTV
jetNSelected Tracks BTV
jetNTracksEtaRel BTV

Table 7: Full list of charged PF candidate features used as input to the DeepFlavour network
for AK4 jets

feature offset | lower bound | upper bound | comment
trackEtaRel - -5 15 BTV
trackPtRel - - 4 BTV
trackPPar - -10° 10° BTV
trackDeltaR - -5 5 BTV
trackPParRatio | -10 100 - BTV
trackSip2dVal - - 70 BTV
trackSip2dSig - - 4-10* BTV
trackSip3dVal - i 10° BTV
trackSip3dSig - - 4.-10* BTV
track]JetDistVal - -20 1 BTV
trackJetDistSig - -1 10° BTV
pr(cPE)/pr() | 1 1 0

AR, (cPF,SV) -5 -5 0

fromPV - - -

VTXass - - -

wy(cPF) - - -

X - - -

quality - - -

Table 8: Full list of neutral PF candidate features used as input to the DeepFlavour network for
AK4 jets

feature offset | lower bound | upper bound
pr(iPE)/pe(j) || -1 1 0
AR,,(nPF,SV) -5 -5 0
isGamma - - -
hadFrac - - -
AR(nPF) -0.6 -0.6 0
wy,(cPF) - - -
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Table 9: Full list of secondary vertex features used as input to the DeepFlavour network for
AK4 jets

feature offset | lower bound | upper bound
pr(SV)

AR(SV) -0.5 -2 0

msv) : : :

Ntracks(sv) - - -
X(8V)
xn(SV)
dyy(SV)
xy(SV) - - 800
d3p(SV) -
S3p(SV) 2 -2 0
cos6(SV) - - -
Erel(sv> - - -

0 -1000 1000

The particles and vertices are ordered using a hierarchical sorting algorithm. Charged can-
didates and secondary vertices are sorted by impact parameter significance. If the charged
candidate was used in the primary vertex fit, they are appended starting from the lowest
AR, (cPF,SV) value. If no secondary vertex is present within the jet, the particle pr is used
instead. The latter two sorting requirements are also applied to neutral PF candidates.
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2.4.2 AKS input features

The input features used by AKS8 tagging are similar to those used in the AK4 DeepFlavour
tagger. They are organized into three groups: inclusive (charged and neutral) PF candidates,
charged PF candidates, and secondary vertices. We take up to 100 inclusive PF candidates,
sorted in descending pr order, and up to 60 charged PF candidates and up to 5 secondary
vertices, ordered by impact parameter significance. The full lists of variables used in each
group are summarized in Table 10 to 12.

Table 10: Full list of charged PF candidate features used as input to the DeepAKS8 network

feature comment
trackEtaRel BTV
trackPtRatio BTV
trackPParRatio BTV
trackSip2dVal BTV
trackSip2dSig BTV
trackSip3dVal BTV
trackSip3dSig BTV
trackJetDistVal BTV
pr(cPF)/pr(j)

Erel (CP F )

A¢(cPE, j)

A1y (cPE, )

AR(cPF,j)

AR, (cPF,SV)

AR(cPF,subjet 1)

AR(cPF, subjet 2)

Xn

quality

d;

Sz

dyy

Sxy

track_dptdpt track covariance
track_detadeta track covariance
track_dphidphi track covariance
track_dxydxy track covariance
track_dzdz track covariance
track_dxydz track covariance
track_dphidxy track covariance
track_dlambdadz | track covariance

3 Deep neural network architectures

The neural network structure was designed to be able to make good use of the large input we
give to the neural network. In contrast to previous proposals we use more information per
particles candidate or vertex. This lead to the special challenge to digest the huge amount of
input features. In order to not expose the later layer to such a huge amount of features we
build a reduced set features per particle (or per few particles) candidate or vertex by so called
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3 Deep neural network architectures

Table 11: Full list of inclusive PF candidate features used as input to the DeepAKS8 network

feature

pr(PF)/pi(j)
Erel(pF)
AG(PE,
An(PF, j)
AR(PEF, )
AR,,(PE,SV)
AR(PF,subjet 1)
AR(PF, subjet 2)
wy,(PF)

fHcaL

feature

pr(SV)/pr(j)
Erel(SV)
A(SV, )
An(SV,j)
AR(SV,]')
pr(SV)
mgsy
Ntracks<SV)
X7(SV)
dyy(SV)
Sw(SV)
dsp(SV)
S3p(SV)
cos6(SV)

Table 12: Full list of secondary vertex features used as input to the DeepAK8 network
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convolutional layers. Convolutional layers learn a transformation from a typically higher di-
mensional representation to a lower representation of features, which in our physics jargon
would be similar to building a few variables from a larger input. This is done simultaneously
with the overall optimization, i.e. the transformation is trained to be ideal for the classification.
Convolution networks are very spread in image recognition, where they effectively summarize
small region of the image and build more useful features than the raw pixels, like edges or
alike, which than are feed to the following layers. In our case a particle candidate or vertex
takes the role of such a small region of an image.

While slim and fat jets share this basic structure in the beginning, we currently use slightly
different networks structures in the later layers.

3.1 Slim jet DNN architecture

The first layers are convolutional layers as explained in the previous paragraph. Figure 1 indi-
cates the number of layer and nodes for these convolutional layers. To allow non-linearities we
use up to four convolutional layers. The convolution are done 1x1, i.e. they are applied only to
individual particle candidates and they only reduce the dimension of the feature per candidate
or vertex, but are not a summary of several candidates. We use the rectified linear unit (ReLu)
activation function.

From convolutional layer we get sequences of features of particle candidates. The sequence
order is still defined from the input particle candidate (or vertex) sorting. They are sorted by
displacement significance. The most displaced are the last in the list. In case the particles are
not displaced and no secondary is in the jet, they are sorted with increasing pr. Exact sort-
ing details are in 2.4. These sequences are than feed into recurrent neural networks (LSTM)
and by that compressed to a single vector per sequence, i.e. charged and neutral candidates
and vertices. When using recurrent networks the ordering is important, thus our underlying
assumption is that the most displaced (in case of displacement) or the highest pr candidates
matter the most.

The output of the recurrent layers is than combined with the global variables, like pt and 7.
This is put into a fully connected neural network with 8 layers. The first layer has 200 nodes
and the latter 100.Again we use ReLu activation.

In between the layer we use a dropout of 0.1 and do batch normalization apart for the input
(layet 0) and output (last layer before loss). For the final layer we use the softmax function as ac-
tivation and cross entropy as the loss to minimize. For the minimization we use the adam [20]
optimizer and train for 50 epochs. The workflow was implemented using [21] that relies on
[22, 23] for the neural network implementation. To check for over-training we use separate
sample that is not used for training and no over-training was found. The final ROCs curves in
the results section 4 using another third set of independent samples.

3.2 DNN AK8

The task of tagging heavy objects (top, W, Z, Higgs) with AKS jets is more challenging than b-
tagging in some aspects. With a larger jet radius, a typical AKS8 jet has many more constituent
particles than AK4 jets. And the interrelationship between theses particles, like the spatial
pattern and the energy correlation, is more crucial for heavy objects than for b-tagging. Thus,
a more complex DNN architecture is adopted for AKS8 tagging.

Similar to the DNN model for AK4 tagging, the DNN model for AKS8 tagging, as illustrated in
Fig. 2, first processes inclusive PF candidates, charge PF candidates and SVs separately with
convolutional neural networks, and then combines outputs from these three networks in a
fully-connected layer before yielding the final prediction. The network is trained as a whole to
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Input features 1x1 CNN  RNN Dense Output
up to 25XL charged part. 18 | 64/32/32/8 -| 150 — b
I bb
up to 25X[ neutral part. 6 32/16/4 — 50 — Biep
Up 0 4x [ sec.vert 12 || 6asz2sz2se |1 50 || 200 &100 o
I
global, 15 g

Figure 1: DNN architecture illustration. Dropout and batch normalizations are not indicated.
The number in the boxes indicate the number of nodes per layer.

optimize all the components simultaneously.

Inclusive PF candidates
o Convolution
(5] [
TR | e [
& >
particles Output
Fully
Charged PF candidates Convoluti connected top
» onvolution _ .
e .. > > W
e | oo [ e [
@ D> 512 units, ;
- ’ Higgs
particles dropout=0.2) QigD
Secondary Vertices
2 Convolution .
[ »
51 ﬁllﬁl (10 layers)
particles :

Figure 2: [llustration of the overall DNN architecture used by AKS tagging.

Different from the convolutional neural networks in AK4 tagging, where the convolution is
performed for each individual particle (i.e., “1x1”), the convolution here is performed for each
adjacent particle triplet (i.e., “3x1”) with overlaps (in CNN jargon, we use a kernel size of
3 and a stride of 1). Such “3x1” convolutions are stacked on top of each other, thus allow
the DNN to see the correlation between nearby particles at earlier stages, and to have a more
global view of the particle correlations at later stages. The design of the convolutional neural
networks model is largely based on the ResNet model [24], which is one of the state-of-the-art
model for image recognition. We adapt it to work with one-dimensional particle list instead
of two-dimensional pictures, but adopt the main structure and all important ingredients such
as residual connection [25], batch normalization [26], and ReLU [27] activation function. The
depth of the convolutional network is 14 for inclusive PF candidates and charge PF candidates,
and 10 for SVs. The filter sizes (i.e., the number of output features) for each convolutional layer
ranges between 32 to 128.

The outputs from the three separate convolutional neural networks are combined in a fully-
connected layer with 512 units, followed a ReLU activation and a DropOut layer with a rate
of 0.2. We use the softmax function in the final layer to yield the final prediction, and cross
entropy as the loss function to minimize. The neural network is implemented with the MXNet
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package [28] and trained with the Adam [20] optimizer with a learning rate of 0.001.

4 Results in simulation

We compare the results of the classification for AK4 and AKS jets to references that are used in
public analysis in CMS. We use physics sample with label composition and pr and # shapes as
they come naturally from the samples process in question. We reject jets with undefined labels.

4.1 AKA4 jet results

For AK4 we use the CVSv2 and DeepCSV b-tagger as reference [18, 29] and for the quark-gluon
discrimination we compare to [30] and alternative deep neural network structures. Figure 3
compares by showing the ROC curves the DeepFlavour tagger results to the former default
CMS tagger CSVv2 and DeepCSV for different processes and pt. For both physics processes,
tt and QCD we see significant gain in all region of the ROC curves. For very high b-jet pt the
b-jet efficiency is increased by 50% with respect to the DeepCSV for a light fake rate of 1%.

At higher pt of jets gluon splitting leads to an increased amount of jets in QCD with two b-
hadrons inside the jet. In a high pt region we thus show in Figure 4 the efficiency for jets with
single b-hadron using only the single b and leptonic b labels as discriminator. Identifying single
bs is slightly more difficult than double bs and the performance is slightly less good. We also
show the tagging performance for the bb label, using also the bb discriminator and it can be
seen that separating bb from light jets is easier, as the performance is improved with respect to
the single b case. The second curve in the double b ROC is the separation of b and bb, using the
probabilities as binary classifier (binary means here that two estimated propabilities (double b
and single b) used are renormalized to add up to one, before they are used as discriminator).
It is interesting that about 1/3 of the jets can be identified as double b with only a fake-rate of
1% for single bs. Figure 4 also shows the efficiency of leptonic decays of single bs vs the mistag
rate for light jets and we see a decent separation, just in between the bb and single b case. The
separation of hadronic and leptonic bs, even using the separation as binary classifier, does not
lead to good leptonic decay separation. It should be noted that we did not explicitly add lepton
information to the tagger.

The c-tagging of Deep]Jet is compared to DeepCSV in Figure 5. We do see a gain with respect
to DeepCSV also for c-tagging.

We defined three working points, which lead to a light jet efficiecy of 10%. 1%, and 0.1% repec-
tively for jets of the QCD sample in a range from 80 to 120 GeV. Using these working points,
called loose, medium and tight, we illustrate the dependence of the tagger performance as a
function of pr. 77, and number of primary vertices in Figure 6. We see the expected degradation
of performance with higher pr and at low , for large 77 and large number of primary vertices.
Note that the QCD sample has a relatively flat pt distribution, thus the pr integrated illustra-
tions are dominated by high pr.

An overview of the discriminator shapes us given in Figure 7. The discrimunators shown
in Figure 7 are according to labels that were present in CMS before and methods to estimate
the data simulation agreement re present. The minor labels of the b-hadron jet major label
are shown in the appendix Figure A. Especially the double b vs single b separation seems
promising and it might motivate a dedicated effort to develop methods to also establish these
discriminators in data in the future.

Figure 8 and 9 show the comparison of DeepJet quark gluon separation to the default like-
lihood method for different pr in the central and forward region of the detector, respectively.
The output of DeepJet was made to a binary classifier to compare to the quark-gluon likelihood
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Figure 5: ROC curves for C-tagging in tt events using the estimated propabilities as binary
classifier for light jet and c-jet separation.

method, which technically was done by scaling the estimated probabilities for light quarks and
gluons such that they add up to one. We see constantly a significant improvement of about
5-10% absolute better efficiency for light quarks compared to likelihood method. Note that
for this comparison all jets of the QCD sample are taken into account that pass the kinematic
criteria and where we did find that the label was well defined, i.e. no balance selection of jets
was applied and instead it was only checked that a parton was found. We also conformed that
a balance selection as done by other quark gluon taggers did not effect the conclusions, but
moved all ROCS by a tiny amount towards better tagging.

We also added as comparison other DNN architectures that should also be able to find jet
structures, but would be blind to heavy flavour. For these DNNs we use only pt of the candi-
dates relative to the jet, relative ¢, relative 7, if the particles are charged or not, and the puppi
weight. We try two DNN structures, one according to [3], i.e. an image with 22 bins and a
convolutional DNN. We use relative eta from each particle candidate to define the bin which
the particle belongs to. For each bin we store the pr sum of the particles with puppi weight
(we tried both, with and without puppi weights) and the multiplicities of charged and neutral
particle candidates. Also the exact details of the layer structure are used as in the reference with
the only difference that we could remove the regularization layers, as we use larger samples.
Alternatively we also took the list of particles candidates (charged and neutral), with the same
above mentioned information sorted in descending pr. As for DeepFlavour we use a recurrent
(LSTM) network followed by several dense layer. We compared these different flavour blind
neural network structures to DeepFlavour. All three structure give similar results as seen in 8
and 9.

Another study we did is the impact of reduced input, i.e. using a few human made variables.
We gave as input the five variables currently used by the BDT quark gluon effort and added
prt, 7 and rho. This made altogether 8 input variables. Again we used a DNN very similar to
the one of the recommended CMS flavour tagger DeepCSV. Only 15 nodes per layer are used,
which as for DeepCSV is between 1-2 times the inputs. We used 7 hidden layers. The compari-
son can be found in 10 and 11. We see a gain by using a full DNN with larger input than only
the human made variables. The effect varies depending on the pr and # and can be sizable at
background rejection of around 10%.

To have an illustrative example on how the multi-classification simplifies real-life tasks, we
show how one can select light quarks in tt events. traditionally this was quite difficult, as we
had a tagger to separate gluons and quarks, one to separate b-jets from ”light” jets and yet
another to separate c-jets from “light” jets. Finally on would apply cuts on all three taggers or
even build a meta-tagger based on other taggers output. For Deep]Jet it is sufficient to just ask
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Figure 7: The different estimated probabilities for different jet labels as observed in the tt sam-
ple.

for the uds probability. A comparison is shown in Figure 13, where we show how the quark-
gluon likelihood compares to DeepJet in answering the question if a jet is a uds-jet. While it
is difficult and often sub-optimal to try to extract a jet label from different standalone taggers,
it is straight forward to reduce a multiclass tagger to a tagger with only two label by rescaling
the tagger information as e.g. done in the previous paragraph for the quark-gluon separation.

For the results shown in Figures 8 and 9, the area under the curve is listed in Table 13. In
addition, the Table shows the efficiency € to select a light quark for two working points, defined
by a misidentification probability of 0.2 (loose), 0.1 (medium), or 0.01 (tight). The reference for
these working points is the QCD sample with pr = 80 — 120 GeV for central 7. The numbers are
extracted from the same sample and for the sample with .pr = 300 — 470 GeV The conclusion
is similar for all pr ranges.

4.2 AKS jet results

This section discusses the performance of the classification of the AKS jets as originating from
t, H, Z, W, or QCD jet using the DNN structure detailed in Section 3.2. The distributions of
the individual probabilities as obtained from the DeepAKS8 multi-tagger for different cases of
truth-matched jets are displayed in Fig 15.

The performance of the DeepAK8 multi-tagger is compared with the performance a boosted
decision tree (BDT) classifier heavily based on the t and W BDT developed in the all-hadronic
search for direct stop production [31]. Details about the selection of variables, the training,
as well as on the performance in MC and data can be found in Section 3.3 and Appendix B
in [32]. Very briefly the input variables exploit jet kinematics, Nsubjettiness ratios, soft-drop
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Figure 8: ROC curves in QCD simulation for different pr ranges in the central region (|77| < 1.3).
Compared are the default DeepJet and the recurrent and convolutional approaches.
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Figure 9: ROC curves in QCD simulation for different pt ranges in the forward region (1.3 <
|7| < 2.4). Compared are the default DeepJet and the recurrent and convolutional approaches.
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Figure 10: ROC curves in QCD simulation for different pr ranges in the central region (|1| <
1.3). Compared are the likelihood method, the 8 parameter DNN and the default DeepFlavour.
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Figure 11: ROC curves in QCD simulation for different pr ranges in the forward region
(1.3 < |n| < 2.4). Compared are the likelihood method, the 8 parameter DNN and the de-
fault DeepFlavour.
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Figure 12: ROC curves in tt simulation for pr > 30 GeV in the central (|| < 1.3) and forward
region (1.3 < || < 2.4) for light-quark and gluon separation.
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Figure 13: ROC curves in tt simulation for pr > 30 GeV for light-quark-jets as signal and any
other labeled jet as background.

Table 13: Area under the ROC curve and efficiencies for two selected working points for the
different DNN-based approaches for quark-gluon tagging, evaluated for QCD samples with
different pr and jet pt thresholds.

] | Area under ROC | e(tight) | e(medium) [ e(loose) |

QCD pr = 80 — 120GeV, jet pt > 70GeV
Deep]et central 0.204 0.17 0.51 0.65
DeepJet forward 0.203 0.15 0.50 0.65
Convolution central 0.211 0.15 0.49 0.64
Convolution forward 0.215 0.13 0.47 0.63
Recurrent central 0.205 0.16 0.51 0.65
Recurrent forward 0.205 0.14 0.49 0.65
QCD pr = 300 — 470 GeV, jet pr > 250 GeV
Deep]et central 0.193 0.15 0.52 0.68
Deep]Jet forward 0.201 0.11 0.47 0.65
Convolution central 0.203 0.13 0.50 0.66
Convolution forward 0.214 0.10 0.44 0.62
Recurrent central 0.191 0.15 0.52 0.68
Recurrent forward 0.203 0.10 0.47 0.65
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Figure 14: ROC curves in Pythia 8 QCD simulation for different pr ranges in the full || region.
Compared are the default Deep]et, the recurrent and convolutional approaches. Jets matched
to uds quarks are considered light quark jets. Gluon jets are defined by a matching to gluons.
Jets with heavy-flavour hadrons are excluded from the jets considered. This also applies to
gluon splitting to BB and CC.
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(SD) mass, Q/G variables and CSV discriminants of the SD subjets. Given that the DeepAKS
multi-tagger targets also hadronic decays of the H and Z bosons, to allow for a fair comparison,
the input variables used by the boosted double-b tagger [33] are also included in the t/W BDT.
This results to a total of 45 input variables to the BDT. The BDT is retrained using the same
samples as the Deep AK8 multi-tagger.

The performance of the DeepAKS8 and BDT-based multi-taggers is evaluated in different re-
gions of the pr of the AKS jet in terms of receiver operating characteristic (ROC) curves. An
independent sample (i.e. not the sample used for train or validation) is used to produce the
ROC curves. The results are displayed in Fig. 16-19. The efficiency of correctly identifying a
t, H, Z, or W (signal efficiency, x-axis) is always compared against the QCD efficiency (back-
ground efficiency, y-axis). The DeepAKS8 multi-tagger outperforms the BDT multi-tagger in all
cases. For example in a working point corresponding to a background efficiency of ~1%, the
DeepAKS8 multi-tagger yields 10-25% larger signal efficiency in all classes.

One of the advantages of a multi-tagger is that allows separation between different objects. As
an example, in Fig. 20 we compare the performance of the DeepAK8 and BDT multi-taggers to
separate W and Z jets. This is a very challenging problem given the similar mass of the two
bosons. The DeepAKS8 multi-tagger shows significantly better performance over a wide range

of pr.

Appendix B includes comparison of the performance plots of the DeepAK8 and BDT multi-
tagger using the samples and matching definitions described in [34]. In addition to the Deep AK8
and the BDT multi-tagger ROC curves, we include the performance of two “cut-based” work-
ing points (high and low purity) for each heavy object as described in [35] and [36].

5 Conclusion

For cases of our muti taggers we see significant gain with repect the the CMS reconstruction
defaults taggers in the performance evaluated in simulation by ROC curves. This is true for
slim jet taggin for heavy flaavours and quark gluon separation as well as for heavy resonances,
H, top, W, and Z tagging for fat jet. The improvements range from a couple of % to even factors
of 2 in efficiency gain at some mistag rate. The next step will be study of these gains in real
data.
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Figure 15: Distribution of the individual probabilities (DNN output) as obtained from the
DeepAKS tagger for different cases of truth-matched jets. Each truth-matched case is indicated
on the plot. In this example AKS8 jets with pr > 400 GeV are considered.
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Figure 16: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for t jets as signal and
QCD jets as background. The plots correspond to different pt ranges of the AKS8 jet. upper:
400 < pr < 500 GeV (left) and 500 < pr < 700 GeV (right), middle: 700 < pt < 900 GeV (left)
and 900 < pr < 1200 GeV (right), lower: 1200 < pr < 1500 GeV (left) and pt > 1500 GeV
(right).
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Figure 17: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for H jets as signal and
QCD jets as background. The plots correspond to different pt ranges of the AKS8 jet. upper:
400 < pr < 500 GeV (left) and 500 < pr < 700 GeV (right), middle: 700 < pt < 900 GeV (left)
and 900 < pr < 1200 GeV (right), lower: 1200 < pr < 1500 GeV (left) and pt > 1500 GeV

(right).
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Figure 18: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for Z jets as signal and
QCD jets as background. The plots correspond to different pt ranges of the AKS8 jet. upper:
400 < pr < 500 GeV (left) and 500 < pr < 700 GeV (right), middle: 700 < pt < 900 GeV (left)
and 900 < pr < 1200 GeV (right), lower: 1200 < pr < 1500 GeV (left) and pt > 1500 GeV
(right).
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Figure 19: Comparison of the ROC curves obtained with the DeepAK8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for W jets as signal and
QCD jets as background. The plots correspond to different pt ranges of the AKS8 jet. upper:
400 < pr < 500 GeV (left) and 500 < pr < 700 GeV (right), middle: 700 < pt < 900 GeV (left)
and 900 < pr < 1200 GeV (right), lower: 1200 < pr < 1500 GeV (left) and pt > 1500 GeV
(right).
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Figure 21: Minor b jet labels separately. Note that no direct lepton information is included
in the input. We would not recommend using the separation of leptonic and hadronic single
b-hadron jets at this point for analysis purposes.
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31

B Performance plots of DeepAK8 multi-tagger using the JMAR
definition

Performance plots of the DeepAKS8 and BDT multi-tagger, as well as two “Cut based” working
points (low and high purity) for each heavy objects as defined from the corresponding POGs
[i.e. IMAR and BTV]. The ROC curves are estimated using the samples and matching definition
suggested by JMAR. More details in the main text.
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Figure 22: Comparison of the ROC curves obtained with the DeepAKS8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for t jets as signal and
QCD jets as background. Two “cut-based” working points (low and high purity) are included
in the plot. The working points are defined by the corresponding POG. The plots correspond to
different pt ranges of the AKS8 jet. upper: 400 < pr < 500 GeV (left) and 500 < pr < 700 GeV
(right), middle: 700 < pr < 900 GeV (left) and 900 < pt < 1200 GeV (right), lower: 1200 <
pr < 1500 GeV (left) and pr > 1500 GeV (right).
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Figure 23: Comparison of the ROC curves obtained with the DeepAKS8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for H jets as signal and
QCD jets as background. Two “cut-based” working points (low and high purity) are included
in the plot. The working points are defined by the corresponding POG. The plots correspond to
different pt ranges of the AKS8 jet. upper: 400 < pr < 500 GeV (left) and 500 < pr < 700 GeV
(right), middle: 700 < pr < 900 GeV (left) and 900 < pt < 1200 GeV (right), lower: 1200 <
pr < 1500 GeV (left) and pr > 1500 GeV (right).
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Figure 24: Comparison of the ROC curves obtained with the DeepAKS8 multi-tagger (solid
lines) and the BDT multi-tagger (dashed lines) in MC simulated events for Z or W jets as sig-
nal and QCD jets as background. Two “cut-based” working points (low and high purity) are
included in the plot. The working points are defined by the corresponding POG. The plots
correspond to different pr ranges of the AKS8 jet. upper: 400 < pr < 500 GeV (left) and
500 < pr < 700 GeV (right), middle: 700 < pr < 900 GeV (left) and 900 < pr < 1200 GeV
(right), lower: 1200 < pr < 1500 GeV (left) and pt > 1500 GeV (right).
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C Additional plots on the DeepAK8 multi-tagger

C.1 Performance of the DeepAK8 multi-tagger as a function of jet p, jet #, and
the number of primary vertices

Figure 25 to 28 show the performance of the DeepAK8 multi-tagger as a function of jet pr,
jet 17, and the number of primary vertices in the event. We have chosen two working points
based on the misidentification rate of 10% (loose) and 1% (tight). We focus on the top, W and
QCD classes of the multi-classifier. The matching definition and the samples used to test the
performance follow the recommendations from JMAR in [34].
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Figure 25: Efficiency of tagging truth-matched top quarks as a function of jet pr (left), jet
n(middle) and the number of primary vertices in the event (right).
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Figure 26: Efficiency of tagging truth-matched W bosons as a function of jet pr (left), jet
#(middle) and the number of primary vertices in the event (right).
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Figure 27: Rate of misidentifying QCD jets as top quarks as a function of jet pr (left), jet
n(middle) and the number of primary vertices in the event (right).
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Figure 28: Rate of misidentifying QCD jets as W bosons as a function of jet pr (left), jet
n(middle) and the number of primary vertices in the event (right).
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C.2 Correlation between the DeepAK8 multi-tagger and traditional tagging vari-
ables

Figure 29 to 32 show the correlation between the Deep AK8 multi-tagger output with traditional
jet tagging variables like the N-subjettiness ratios 121, T3 and the soft-drop mass. We focus on
the top, W and QCD classes of the multi-classifier. The matching definition and the samples
used to test the performance follow the recommendations from JMAR in [34].
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Figure 29: Correlation between the DNN output of the top class and the N-subjettiness ratio
132 (left) and the soft-drop mass Mgp (right) in truth-matched top jets.
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Figure 30: Correlation between the DNN output of the top class and the N-subjettiness ratio
1 (left) and the soft-drop mass Mgp (right) in truth-matched W jets.



38 C Additional plots on the DeepAK8 multi-tagger

T3

i
f i b Lus L
.50.550.60.650.70.750.80.850.90.95 1

gcd-top DNN output gcd-top DNN output

Cbon b boen b b bbb o
8.50.550.60.650.70.750.80.850.90.95 1

Figure 31: Correlation between the DNN output of the top class and the N-subjettiness ratio
132 (left) and the soft-drop mass Mgp (right) in QCD jets.
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Figure 32: Correlation between the DNN output of the top class and the N-subjettiness ratio
1 (left) and the soft-drop mass Mgp (right) in QCD jets.
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C.3 Jet mass distribution

477 Figure 33 and 34 show the soft-drop mass of the jets inclusively and after the loose and tight
478 working points in truth-matched jets and QCD jets, respectively.
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Figure 33: Soft-drop mass of the truth-matched jets inclusively (black line), after passing the
loose working point (red line) and after passing the tight working point (blue line). Left: jets

matched to top quarks; Right: jets matched to W bosons.
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Figure 34: Soft-drop mass of the QCD jets inclusively (black line), after passing the loose
working point (red line) and after passing the tight working point (blue line). Left: for top
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