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Abstract

Deep learning has led to several breakthroughs outside the field of high energy physics, yet in jet
reconstruction for the CMS experiment at the CERN LHC it has not been used so far. This report
shows results of applying deep learning strategies to jet reconstruction at the stage of identifying
the original parton association of the jet (jet tagging), which is crucial for physics analyses at the
LHC experiments. We introduce a custom deep neural network architecture for jet tagging. We
compare the performance of this novel method with the other established approaches at CMS and show
that the proposed strategy provides a significant improvement. The strategy provides the first multi-
class classifier, instead of the few binary classifiers that previously were used, and thus yields more
information and in a more convenient way. The performance results obtained with simulation imply a
significant improvement for a large number of important physics analysis at the CMS experiment.
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Abstract. Deep learning has led to several breakthroughs outside the field of high energy
physics, yet in jet reconstruction for the CMS experiment at the CERN LHC it has not been
used so far. This report shows results of applying deep learning strategies to jet reconstruction at
the stage of identifying the original parton association of the jet (jet tagging), which is crucial
for physics analyses at the LHC experiments. We introduce a custom deep neural network
architecture for jet tagging. We compare the performance of this novel method with the other
established approaches at CMS and show that the proposed strategy provides a significant
improvement. The strategy provides the first multi-class classifier, instead of the few binary
classifiers that previously were used, and thus yields more information and in a more convenient
way. The performance results obtained with simulation imply a significant improvement for a
large number of important physics analysis at the CMS experiment.

1. Introduction
The reconstruction of jets, sprays of particles that originate from the hadronization process of
a quark or gluon, is a central element in high energy physics collider experiments. Jets can
originate from the following particles: b quarks, c quarks, light quarks (u, d, s quark), and
gluons. The b and c quarks are heavier that the other aforementioned quarks. If the focus is on
identifying b and c quarks we speak of (heavy) flavor tagging. If we want to classify gluons, we
cannot speak of flavor tagging as they do not have a physical flavor. We speak either of generic
tagging if the gluon class is added or of quark vs. gluon tagging, if it is only a binary classifier.
Recently several studies, using simplified simulations, were made on applying deep neural
networks in jet tagging. It was proposed to use the analogy of the calorimeter cells to
pixels in images to apply convolutional or dense networks that are often used for computer
vision [1, 2, 3, 4]. The results ranged from no significant improvement to slight improvements
with respect to established methods and did not include jets originating from heavy flavor
quarks. Also, the use of recurrent neural networks was proposed [5, 6] in context of heavy flavor
and other jet tagging.
In section 2, we present the jet tagging inputs in more detail in terms of the intrinsic data
hierarchy and complexity. We present in section 3 the currently recommended flavor tagger
of the CMS experiment [7] as well as the new proposal that is built on deep learning in the
sense that layers for feature engineering are added that use the intrinsic hierarchy of the data.
Finally, in section 5, we present results of the former standard CMS flavor tagger (CSVv2),
the currently recommended flavor tagger (DeepCSV) and the generic new proposal (DeepJet).
We also compare the generic tagging capabilities to other deep neural network architectures for
quark vs. gluon classification.



Figure 1. Slice of the CMS detector. It illustrates the different detector types and their different
response to different particle types, such as muons or hadrons.

2. Particle flow jets
Particle flow jets consist of a list of particles reconstructed by the particle flow algorithm [12].
A single particle leaves various individual signals in the CMS subsystems. The subsystems are
composed of different detector technologies as can be seen in Figure 1, which all have different
signal responses to different particles. So, the particle data is very heterogeneous. As different
particles carry different information, we split the particles, that are reconstructed by the parti-
cle flow algorithm, into two categories; charged particles which we measure in the tracker, and
neutral that are only measured in the calorimeter. The object lists are sorted in descending
order of a measure of their displacement significance, which for heavy flavor tagging is known
to be a key observable.
There is a natural data hierarchy as jets are composed of particles, all of which have features. To
build these lists we use the clustering algorithm anti-kT [13] that identifies particles belonging
to one particle spray initiated by a quark or gluon. Typically, fewer than 50 particles are found
in such lists. The clustering algorithm has a parameter that is related to the radius of the cone
of the particles spray which is set to 0.4. Tracks, i.e. the trajectories of charged particles are
used to find vertices from where several tracks originated. Light quarks and gluons hadronize
dominantly to short lived hadrons and their tracks originate directly from the proton-proton
collision point, called the primary vertex. Secondary vertices are displaced from the primary
vertex and are produced by heavy flavor hadrons that do not decay immediately and stem from b
or c qaurks. If secondary vertices are found inside the cone of the jet, we add them as additional
information to the jet.

3. Neural network designs
For the DeepCSV tagger we first apply quality criteria to tracks. Then we use the first six most
displaced tracks and build seven features by hand that are traditionally used for b tagging [14].
Also, information from the most displaced vertex is used and again the features are similar to



those in [14] as well as the seven global features that we use, such as the transverse momentum
of the jet or number of charged particles in the jet. All these features (around 60) are the input
to a dense neural network with six layers and 100 nodes per layer.
For the deep learned DeepJet tagger the input is significantly extended. No quality criteria are
applied for the charged particles of the jet. We use the features that are used for the heavy
flavor tagging of DeepCSV and, in addition we also use features that are likely useful for jet
classification, e.g. features that are related to the quality of tracks. All together this makes
18 features per charged particle. For neutral particles, we only use six features; some of which
are calculated with respect to the secondary vertex, e.g. the opening angle between the particle
and the first secondary vertex, if present. Finally, we use up to four secondary vertices that
were reconstructed in the jet cone and use again the same features as in DeepCSV and a few
additional ones, adding up to 12 features per vertex. These lists are then input to the neural
network architecture. The first step is to engineer features per particle or vertex. For this pur-
pose, several 1D 1x1 convolutional layers are applied to the lists of objects. For charged particles
and secondary vertices, four layers with 64, 32, 32, and eight nodes are used. For the neutral
particles with considerably less information content only 3 layers are used with 32, 16 and 8
nodes. This strategy allows us to use many input features per particle, which is important as it
allows to use rather complete information for each particle or vertex. Altogether the number of
input features is around 650. The output of the convolutional layer is then given to a LSTM [15]
recurrent neural network. The output of the three recurrent networks that correspond to the
charged particles are 150, 50, and 50 intermediate features that correspond to the charged parti-
cles, the neutral particles and the secondary vertices, respectively. These intermediate features
are concatenated with eight global features, that are used traditionally in flavor tagging, and
given to a dense neural network with six layers with 200 nodes for the first and 100 nodes for
the remaining layers. For both DeepCSV and DeepJet the ReLU [16] activation function is
used, and the softmax function for the last layer. We add DropOut [17] (rate 0.1) layers and
batch normalization [18]. For optimization, the Adam optimizer [19] is used with a learning
rate of ε = 10−8 without automatic learning rate decay. Instead, the learning rate is decreased
manually during training time if the loss remains constant. For the technical implementation,
we use Keras [20] and Tensorflow [21].

4. Training strategy
Both DeepCSV and DeepJet differ from previous taggers also in the training strategy. In both
cases for the first time in CMS a multi-class classification approach is used for the classes. For
DeepCSV the light quark class and the gluon class are merged, as usually done in flavor tagging.
For DeepJet though these are individual classes to provide a generic tagger.
Another change with respect to previous taggers is that a larger and more diverse sample is
used for the training. We use simulated events from two processes, namely QCD and top quark
pair production. The more diverse samples reduce the danger of obtain a classifier too specific
to a process. The larger sample sizes allow to increase the complexity of the tagger without
danger of overfitting. Depending on the simulation version we use 40 to 100 million jet samples.
Typically, we reserve 10% of the samples for both, validation and development. The training
needs about 30 minutes on a NVIDIA GTX 1080 GPU for DeepCSV and 24 hours for DeepJet.

5. Performance comparison in real data and simulations
Figure 2 compares the DeepCSV to the old tagger (CSVv2) [14] of the CMS experiment and
a significantly better performance is observed. At the same true positive rate (b jet efficiency)
of about 65%, the false positive rate (misidentification probability) for uds quarks and gluon



is reduced from 1% to 0.6%. The 1% false positive rate is a typical working point used for
classification. The improvement originate from the changes in feature selection, new training
samples, and a new machine learning algorithm. The efficiencies (true positive rate) of the tagger
above a certain threshold on the discriminator are evaluated in real collision data as well as in
simulation, details of the procedure are described in Ref. [14]. Figure 3 illustrates the so-called
scaling factors that measure the difference in tagging efficiencies in simulation and real collision
data. DeepCSV and CSVv2 show the similar agreement in simulation and data, which means
that DeepCSV is also more performant in real data collisions. Also for other classes DeepCSV
outperformed the old CMS taggers, specifically the binary c quark vs. light quark and c quark
vs. b quark taggers.
Figure 4 shows the comparison of DeepCSV to DeepJet (labeled DeepFlavour as it is used for
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Figure 2. [8] True positive (b jet efficiency)
rate vs. false positive rate of light jets and
c quarks in simulation with 2016 conditions
for jets with more than 30 GeV transverse
momentum from top quark pair production.
DeepCSV and CSVv2 are explained in the
text. cMVA uses muon information, which
for validation purposes is not used by other
taggers.
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Figure 3. Difference in b jet efficiency
between real data and simulation for different
working points (loose (L), medium (M), and
tight (T) with 10%, 1%, 0.1% false positive
rate, respectively) for DeepCSV and CSVv2.
Several complementary methods are used as
described in [14, 8].

flavor tagging in this case). A further significant gain is observed; the false positive rate is reduced
from 1% to 0.7% for 78% true positive rate. We also tested using the extended input of DeepJet
as the input to an extended dense neural network. The resulting performance is labeled noConv
in Figure 4 and shows that the more sophisticated custom architecture is needed. We also tested
using the input of DeepCSV as input for the DeepJet architecture and effectively reproduced the
DeepCSV result. We tested in several steps increasing the input from DeepCSV to DeepJet and
found that a significant improvement was achieved by not using the quality criteria for particle
selection of DeepCSV and CSVv2. The second biggest impact were the additional features per
charged particles. The additional secondary vertices and neutral particles gave only modest
gain, but are also important for other classes of the generic DeepJet tagger. In Figures 6 and
5 DeepCSV and DeepJet are compared at very high transverse momentum of the b jets. The
gain is very significant; the false positive rate is reduced from 1% to only 0.12% at the usual
working point. Also here a main limitation was the charged particle quality selection and as
well the upper limit of only six charged particles (tracks) that were used in DeepCSV. We thus



learned that in order to reduce the input feature dimension, useful information was lost in the
past flavor taggers of CMS.
For quark vs. gluon separation we compare DeepJet to custom deep neural networks. In [3]
it was shown that these slightly outperform the classical approaches, namely using only a few
handcrafted features that are input machine learning tools. As reference we used a neural
network as described in [3], i.e. a 2D convolution layers working on a jet image. To produce
images the continuous particle positions are made discrete, i.e. they are pixelized. We also
built a slimmed down version of DeepJet, as for light quark vs. gluon separation it is evident
from first principle arguments that just a fraction of the input to DeepJet is relevant. We used
only 4 features per particles and removed the 1x1 convolutional layers. The secondary vertices
were dropped as well. The slimmed down version of DeepJet is labeled recurrent in the Figure.
Figure 7 compares the three networks, that all were trained with the same samples. DeepJet
and the slimmed down version of DeepJet performed similarly well and only marginally better
than the 2D convolution. The 2D convolution works well because quark vs. gluon separation
mostly dependent on particle densities and energies densities, which can well be represented in
images. Heavy flavor tagging however is much more complex.
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Figure 4. [9] True positive rate (b
jet efficiency) vs. false positive rate of
light jets and c quarks in simulation with
2017 conditions for jets with more than
30 GeV transverse momentum from top
pair production. The jet-taggers DeepJet,
DeepCSV, and noConv are described in the
text.
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Figure 5. [9] True positive rate (b jet
efficiency) vs. false positive rate of light
jets and c quarks in simulation with 2017
conditions for jets in the range of 300-600
GeV of transverse momentum from QCD
processes. The DeepJet and DeepCSV taggers
are described in the text.

6. Conclusion
We present a new network architecture for jet tagging for the LHC experiments. DeepCSV,
the currently recommended tagger of CMS based on a deep neural network, led to significant
gain in tagging performance and was validated in real collision data. An even more recent
development is DeepJet, a generic tagger for all hadron classes, which is based on deep learning.
It outperforms the other taggers and especially at large transverse momenta of the jets the gain
is very significant, nearly on order of magnitude less false positive rate for the standard threshold
definitions. If the expectations from simulations are confirmed in real data that would yield to
a significant improvement of the scientific output of the CMS experiment.
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Figure 6. [9] True positive rate (b jet
efficiency) vs. false positive rate of light
jets and c quarks in simulation with 2017
conditions for jets in the range of 600-1000
GeV of transverse momentum from QCD
processes. The DeepJet and DeepCSV taggers
are described in the text.
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Figure 7. [10] True positive rate (light jet
efficiency) vs. false positive rate of gluon
jets in simulation with 2017 conditions for
jets in the range of 80-120 GeV of transverse
momentum from QCD processes. Three
different (DeepJet, recurrent, convolutional)
neural network based taggers are tested. Only
DeepJet is a multi-class classifier that can also
be used for flavor tagging.

References
[1] J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, “Jet-Images: Computer Vision Inspired Techniques for

Jet Tagging,” JHEP 1502, 118 (2015)
[2] G. Kasieczka, T. Plehn, M. Russell and T. Schell, “Deep-learning Top Taggers or The End of QCD?,” JHEP

1705, 006 (2017)
[3] P. T. Komiske, E. M. Metodiev and M. D. Schwartz, “Deep learning in color: towards automated quark/gluon

jet discrimination,” JHEP 1701, 110 (2017)
[4] P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, “Jet Substructure Classification in High-Energy

Physics with Deep Neural Networks,” Phys. Rev. D 93, no. 9, 094034 (2016)
[5] D. Guest, J. Collado, P. Baldi, S. C. Hsu, G. Urban and D. Whiteson, “Jet Flavor Classification in High-Energy

Physics with Deep Neural Networks,” Phys. Rev. D 94, no. 11, 112002 (2016)
[6] G. Louppe, K. Cho, C. Becot and K. Cranmer, “QCD-Aware Recursive Neural Networks for Jet Physics,”

arXiv:1702.00748 [hep-ph] (2017)
[7] CMS Collaboration, “The CMS Experiment at the CERN LHC,” JINST 3, S08004 (2008)
[8] CMS Collaboration, “Heavy flavor identification at CMS with deep neural networks,” Detector Performance

Summary: CMS-DPS-17-005, http://cds.cern.ch/record/2255736, (2017)
[9] CMS Collaboration, “CMS Phase 1 heavy flavour identification performance and developments,” Detector

Performance Summary: CMS-DPS-17-013, http://cds.cern.ch/record/2263802, (2017)
[10] CMS Collaboration, “New developments for jet substructure reconstruction in CMS,” Detector Performance

Summary: CMS-DPS-17-027, https://cds.cern.ch/record/2275226, (2017)
[11] ATLAS Collaboration, “Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the

ATLAS Experiment,” ATLAS note: ATL-PHYS-PUB-2017-003, http://cds.cern.ch/record/2255226, (2017)
[12] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector,”

JINST 12, no. 10, P10003 (2017)
[13] M. Cacciari, G. P. Salam and G. Soyez, “The Anti-k(t) jet clustering algorithm,” JHEP 0804, 063 (2008)
[14] CMS Collaboration, Identification of b-quark Jets at the CMS Experiment in the LHC Run2 Startup,” CMS

public analysis summary BTV-15-001, (2015)
[15] S. Hochreiter and J. Schmidhuber, “Flat Minima,” Neural Computation 9(1):1-42,

http://people.idsia.ch/ juergen/fm/ (1997)
[16] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” Proceedings of

the 27th international conference on machine learning (ICML-10), pp. 807–814. (2010)
[17] N. Srivastava et al., “Dropout: a simple way to prevent neural networks from overfitting,” Journal of machine



learning research 15, no. 1, 1929–1958. (2014)
[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” International Conference on Machine Learning, pp. 448–456. (2015)
[19] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv: 1412.6980 [cs.LG] (2014)
[20] Chollet, François et al., “Keras,” https://github.com/fchollet/keras, (2015)
[21] Mart́ın Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,”

https://www.tensorflow.org (2015)


