Walking Technicolor in the light of the LHC data

Alexander Belyaev

Southampton University & Rutherford Appleton Laboratory

21 June 2018

Collaborators & Projects

 "Walking Technicolor in the light of Z' searches at the LHC A.Coupe, M.Frandsen, E. Olaiya, C. Shepherd-Themistocleous, AB

arXiv:1805.10867

- "Excluding technicolor" A.Coupe, N.Evans, AB to appear
- "The Technicolor Higgs in the Light of LHC Data"
 M.Brown, R.Foadi, M.Frandsen, AB arXiv:1309.2097
- "Mixed dark matter from Technicolor "
 M.Frandsen, S. Sarkar, F.Sannino, AB arXiv:1007.4839
- "Technicolor Walks at the LHC"
 R. Foadi, M. Frandsen, M. Jarvinen, F. Sannino, AB arXiv:0809.0793

Problems to be addressed by underlying theory

The Nature of Electroweak Symmetry Breaking (the Nature of Higgs)

The origin of matter/anti-matter asymmetry

Underlying Theory

The origin of Dark Matter and Dark Energy The problem of hierarchy, fine-tuning, unification with gravity

SM Higgs vs Technicolor

- simple and economical
- GIM mechanism, no FCNC problems, EW precision data are OK for preferably light Higgs boson
- SM is established, perfectly describes data
- fine-tuning and naturalness problem; triviality problem

$$\Rightarrow \beta = \frac{3\lambda^2}{2\pi^2} > 0 \qquad \lambda(\mu) < \frac{3}{2\pi^2 \log \frac{\Lambda}{\mu}}$$

- there is no example of fundamental scalar
- Scalar potential parameters and yukawa couplings are inputs

- complicated at the eff theory level
- FCNC constraints requires walking, potential tension with EW precision data
- no viable ETC model suggested yet, work in progress
- no fine-tuning, the scale is dynamically generated

- Superconductivity and QCD are examples of dynamical symmetry breaking
- parameters of low-energy effective theory are derived once underlying ETC is constructed

Is Technicolor really dead?

RIVMPH OF WEAK COUPLING TECHNICOLOR 1977-2011 R.I.P.

"Walking Technicolor in the light f the LHC data"

Is Technicolor really dead?

If title contains question, then the answer is ...

NO!

Is Technicolor really dead?

If title contains question, then the answer is ...

NO!

Not yet, let us see

Technicolor

- SU(N_{TC}) break the chiral symmetry of techniquarks
- their condensate breaks EW Symmetry

 Important componet of the theory: Extended Technicolor Sector – describes how SM fermions interact with the technifermioncondensate to acquire mass

Lane and Eichten 80

$$m_q \approx \frac{g_{ETC}^2}{M_{ETC}^2} \langle \overline{U}U \rangle_{ETC}$$

 Difficult to get masses even for s- and c-quarks: TC dynamics should be NOT like QCD, in a "walking theory" we have

$$_{ extsf{ETC}}\sim(rac{\Lambda_{ extsf{ETC}}}{\Lambda_{ extsf{TC}}})^{\gamma(lpha^*)}_{ extsf{TC}}$$

Holdom 81; Appelquist, Wijewardhana 86 Enhanced SM fermion masses and suppressed FCNC

Conformal Windows Studies

Alexander Belyaev

"Walking Technicolor in the light f the LHC data"

Low Energy Effective NMWT Theory

- $N_c = 3$, $N_f = 2$, in the two-index symmetric $SU(2)_I \times SU(2)_R \longrightarrow SU(2)_V$
- spin-0 and spin-1 objects fill out representations of the chiral symmetry group
- higgs sector with a broken phase
- spin-1 resonances introduced as gauge fields (Bando, Kugo, Uehara, Yamawaki, and Yanagida 85) similar description used for the BESS model (Casalbuoni, Deandrea, De Curtis, Dominici, Gatto, Grazzini 95)
- See Applequist, Da Silva, Sannino 99 for description of vector mesons In EW symmetry breaking
- Effective Lagrangian

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{higgs} + \mathcal{L}_{Higgs-vector} + \mathcal{L}_{fermion}$$

Effective Lagrangian for SU(2) $_{L}$ X SU(2) $_{R}$

$$\mathcal{L}_{\text{boson}} = -\frac{1}{2} \text{Tr} \left[\widetilde{W}_{\mu\nu} \widetilde{W}^{\mu\nu} \right] - \frac{1}{4} \widetilde{B}_{\mu\nu} \widetilde{B}^{\mu\nu} - \frac{1}{2} \text{Tr} \left[F_{\text{L}\mu\nu} F_{\text{L}}^{\mu\nu} + F_{\text{R}\mu\nu} F_{\text{R}}^{\mu\nu} \right]$$
$$\mathcal{L}_{\text{Higgs}} = \frac{\mu^2}{2} \text{Tr} \left[M M^{\dagger} \right] - \frac{\lambda}{4} \text{Tr} \left[M M^{\dagger} \right]^2$$
$$\widetilde{W}_{\mu\nu} \text{ and } \widetilde{B}_{\mu\nu} \text{ are EW filed strength tensors}$$
$$F_{\text{L}/\text{R}\mu\nu} \text{ are the field strength tensors associated to the vector meson fields} \qquad A_{\text{L}/\text{R}\mu}$$
$$2 \text{x2 Matrix} \qquad M = \frac{1}{\sqrt{2}} \left[v + H + 2 i \pi^a T^a \right] , \qquad a = 1, 2, 3$$
$$\frac{\text{Covariant}}{\text{derivative}} \qquad D_{\mu}M = \partial_{\mu}M - i g \widetilde{W}_{\mu}^a T^aM + i g' M \widetilde{B}_{\mu} T^3$$

Effective Lagrangian for SU(2) $_{L}$ X SU(2) $_{R}$

$$\mathcal{L}_{\text{Higgs-Vector}} = m^2 \operatorname{Tr} \left[C_{\text{L}\mu}^2 + C_{\text{R}\mu}^2 \right]$$

$$- \frac{1}{2} \operatorname{Tr} \left[D_\mu M D^\mu M^\dagger \right] - \tilde{g^2} r_2 \operatorname{Tr} \left[C_{\text{L}\mu} M C_{\text{R}}^\mu M^\dagger \right]$$

$$- \frac{i \, \tilde{g} \, r_3}{4} \operatorname{Tr} \left[C_{\text{L}\mu} \left(M D^\mu M^\dagger - D^\mu M M^\dagger \right) + C_{\text{R}\mu} \left(M^\dagger D^\mu M - D^\mu M^\dagger M \right) \right]$$

$$- \frac{\tilde{g}^2 s}{4} \operatorname{Tr} \left[C_{\text{L}\mu}^2 + C_{\text{R}\mu}^2 \right] \operatorname{Tr} \left[M M^\dagger \right]$$

$$C_{\mathrm{L}\mu} \equiv A_{\mathrm{L}\mu} - \frac{g}{\tilde{g}}\widetilde{W_{\mu}} , \quad C_{\mathrm{R}\mu} \equiv A_{\mathrm{R}\mu} - \frac{g'}{\tilde{g}}\widetilde{B_{\mu}} .$$

Weinberg Sum Rules (WSR)

• spin 1 vector and axial $V^a = \frac{A^a_L + A^a_R}{\sqrt{2}}$, $A^a = \frac{A^a_L - A^a_R}{\sqrt{2}}$

 masses and decay constants

$$M_V^2 = \frac{\tilde{g}^2}{4} \left[f^2 + (s - r_2) v^2 \right] \qquad F_V = \frac{\sqrt{2}M_V}{\tilde{g}} ,$$

$$M_A^2 = \frac{\tilde{g}^2}{4} \left[f^2 + (s + r_2) v^2 \right] \qquad F_A = \frac{\sqrt{2}M_A}{\tilde{g}} \chi$$

$$\chi \equiv 1 - \frac{v^2 \tilde{g}^2 r_3}{4M_A^2}$$

 $S = 4\pi \left[\frac{F_V^2}{M_V^2} - \frac{F_A^2}{M_V^2} \right]$

$$F_V^2 - F_A^2 = F_\pi^2$$
 $F_V^2 M_V^2 - F_A^2 M_A^2 = a \frac{\delta \pi}{d(R)} F_\pi^4$

zeroth

first

second a>0, a ~ O(1) is consistent with the conformal window Details: Appelquist, Sannino 98

 $\circ -2$

Weinberg Sum Rules (WSR)

• spin 1 vector and axial $V^a = \frac{A^a_L + A^a_R}{\sqrt{2}}$, $A^a = \frac{A^a_L - A^a_R}{\sqrt{2}}$

$$M_V^2 = \frac{\tilde{g}^2}{4} \left[f^2 + (s - r_2) v^2 \right] \qquad F_V = \frac{\sqrt{2}M_V}{\tilde{g}},$$
$$M_A^2 = \frac{\tilde{g}^2}{4} \left[f^2 + (s + r_2) v^2 \right] \qquad F_A = \frac{\sqrt{2}M_A}{\tilde{g}} \chi$$
$$w^2 \tilde{z}^2 m^2$$

 masses and decay constants

S PARAMETER, OR "ZEROTH WSR": IMPORTANT CONTRIBUTIONS FROM THE NEAR CONFORMAL REGION.

$$S = 4\pi F_{\pi}^{2} \left[\frac{1}{M_{\rm V}^{2}} + \frac{1}{M_{\rm A}^{2}} - a \frac{8\pi^{2} F_{\pi}^{2}}{d({\rm R}) M_{\rm V}^{2} M_{\rm A}^{2}} \right]$$

 $\chi \equiv 1 - \frac{v g \tau_3}{4M_4^2}$

NMWT parameter space and particle content

• fixing S and using WSR parameter space is reduced to $M_A, \ \tilde{g}, \ s$

$$S = \frac{8\pi}{\tilde{g}^2} (1 - \chi^2) ,$$

$$r_2 = r_3 - 1 .$$

$$\chi \equiv 1 - \frac{v^2 \tilde{g}^2 r_3}{4M_A^2}$$

- s, M_H have sizable effect in the process involving composite Higgs
- *new particles two triplets of heavy mesons:*

 Z', W'^{\pm} and $Z''W''^{\pm}$

NMWT parameter space from 2007

Model Implementation into LanHEP and CalcHEP

LanHEP (Andrei Semenov)

- Automatic generation of Feynman rules from the Lagrangian
- Has checks for
 - Hermiticity
 - BRST invariance
 - EM charge conservation
 - Particle mixings, mass terms, and mass matrices

CalcHEP (AP, AB, NC)

- Automatic calculations of treelevel processes within userdefined model
- User friendly graphical interface
- Easy implementation of new models
 - Especially using LanHEP
- Feynman gauge and unitary gauge
 - Important cross check.

Mass Spectrum

Mass Spectrum

$$M_{inv}^2 = \left(1 + \frac{g_1^2 + g_2^2}{\tilde{g}^2}\right) \frac{4\pi}{S} F_{\pi}^2$$

Width/Mass ratio

Z' is narrow essentially due to the small value of the S-parameter

Decay Branching Ratios

"Walking Technicolor in the light f the LHC data"

LHC Signatures $R_{1,2}^0 \equiv Z', Z'' \quad R_{1,2}^\pm \equiv W'^\pm, W''^\pm$ $(1) \ \ell^+\ell^- \text{ signature from the process } pp \to R^0_{1,2} \to \ell^+\ell^ (2) \ \ell + \not\!\!\!E_T \text{ signature from the process } pp \to R^\pm_{1,2} \to \ell^\pm\nu$ $pp \rightarrow R_{1,2}^{0} \qquad (3) \quad 3\ell + \not{E}_{T} \text{ signature from the process } pp \rightarrow R_{1,2}^{\pm} \rightarrow ZW^{\pm} \rightarrow 3\ell\nu$ $pp \rightarrow R_{1,2}^{\pm} \qquad (4) \quad detector \ acceptance \ cuts$ $|\eta^{\ell}| < 2.5 \qquad p_{T}^{\ell} > 15 \text{ GeV}$ transverse mass variable $(M_{\ell}^{T})^{2} = \left[\sqrt{M^{2}(\ell) + p_{T}^{2}(\ell) + |\not\!\!p_{T}|}\right]^{2} - |\vec{p}_{T}(\ell) + \not\!\!p_{T}|^{2}$ $(M_{3\ell}^T)^2 = [\sqrt{M^2(\ell\ell\ell) + p_T^2(\ell\ell\ell)} + |\not\!\!p_T|]^2 - |\vec{p_T}(\ell\ell\ell) + \vec{p_T}|^2$

Signature (1)

(1) $\ell^+\ell^-$ signature from the process $pp \to R^0_{1,2} \to \ell^+\ell^-$

"Walking Technicolor in the light f the LHC data"

Signature (2)

(2) $\ell + \not\!\!\!E_T$ signature from the process $pp \to R_{1,2}^{\pm} \to \ell^{\pm} \nu$

for higher masses only one resonance is observed

Signature (3)

(3) $3\ell + \not\!\!\!E_T$ signature from the process $pp \to R_{1,2}^{\pm} \to ZW^{\pm} \to 3\ell\nu$

not very high rates, but clean signal

Interplay of Z' and Z'': relative production rates

Interplay of Z' and Z": interference

Previous results from ATLAS – just one benchmark

Previous results from ATLAS – just one benchmark

Recent LHC results

WTC space exclusion using LHC searches

"Walking Technicolor in the light f the LHC data"

4000

WTC space exclusion using from 4D scan

WTC space exclusion within Holographic approach (see Nick's talk)

Exclusion from $pp \rightarrow \rho/a \rightarrow l^+l^-$, LHC@13TeV, 36 fb⁻¹

Alexander Belyaev

"Walking Technicolor in the light f the LHC data"

WTC space exclusion within Holographic approach

The whole predicted 4D WTC parameter space is excluded!