The LHC Phenomenology of Vectorlike Confinement

Takemichi Okui

(Florida State University)

Based on work with C. Kilic (Rutgers) and R. Sundrum (Hopkins)

For details and references, see C.K & T.O, 1001.xxxx, C.K., T.O & R.S., 0906.0577 (pub. in JHEP), C.K., T.O & R.S., 0802.2568 (pub. in JHEP).

My worry...

The SM

Beautifully tested. No signs of new physics at TeV.

Rich new physics?

My worry...

The SM

Rich new physics?

Beautifully tested. No signs of new physics at TeV.

Encouraging (imaginary) "history"

```
"SM" @ E < 100 \text{ MeV}

E [MeV]

100

Beautifully tested

0.5 \frac{e}{\gamma}
```

My worry...

The SM

Rich new physics?

Beautifully tested. No signs of new physics at TeV.

Encouraging (imaginary) "history"

- QED-QCD system - (i.e. SM at $\text{GeV} < E \ll M_W$)

- Vectorlike Confinement at TeV -

- QED-QCD system - (i.e. SM at $\text{GeV} < E \ll M_W$)

- Vectorlike Confinement at TeV -

- QED-QCD system - (i.e. SM at $\text{GeV} < E \ll M_W$)

- Vectorlike Confinement at TeV -

- QED-QCD system - (i.e. SM at $\text{GeV} < E \ll M_W$)

- Vectorlike Confinement at TeV -

A very simple (yet pheno rich) possibility at TeV!

The Signature Process

The Signature Process

How does $\widetilde{\pi}$ decay?

Summary of Framework

- * Charged massive stable particles (CHAMPs)
- * Colored massive stable particles (\rightarrow R-hadrons)
- * Dark matter
- * Multi-W, -Z, -photon productions
- * Multi-jet productions
- * (Displaced) leptoquarks, di-quarks, di-leptons

The Di-CHAMP Resonance Signal

The Di-CHAMP Resonance

2 species: $\psi^+ \chi$ (Say, EW doublet and singlet w/o color)

Can we see the parent $\tilde{\rho}$ resonance?

Can we see the parent $\tilde{\rho}$ resonance?

Can we see the parent $\tilde{\rho}$ resonance?

Can we trigger on the CHAMPs?

mass point	$m_{\tilde{\rho}} (\text{TeV})$	$m_{\tilde{\pi}} \; (\text{GeV})$
1	1.5	300
2	2.5	300
3	2.5	600

The Multi-photon Resonance Signal

Look at $\tilde{\pi}_{\text{short}}$ of the same model.

Look at $\tilde{\pi}_{\text{short}}$ of the same model.

Can we reconstruct $\tilde{\rho}$ and $\tilde{\pi}$?

The Di- and Tetra-R-hadron Signals

The Multi-jet Resonance Signal at the Tevatron

Multijet Resonances at Tevatron

Only one species: ψ w/ no electroweak int. Only QCD int.

Multijet Resonances at Tevatron

Only one species: ψ w/ no electroweak int. Only QCD int.

Kinematical features:

T. OKUI (FSU)

Observables and Cuts for the Tevatron Multijet Model

(1) To pick out the ρ $m_{4i} \equiv E_1 + E_2 + E_3 + E_4$ (in c.m. frame) (2) To pick out the two $\tilde{\pi}$'s (i) choose 2 pairs ij and kl(ii) calculate $m_{ij} \equiv E_i + E_j$ (in *i*-*j* c.m. frame) and similarly m_{kl} (iii) minimize $\Delta m \equiv |m_{ij} - m_{kl}|$ (iv) keep event only if $\Delta m < 25 \,\mathrm{GeV}$ (v) take average $\langle m_{2i} \rangle \equiv \left(m_{ij} + m_{kl} \right) / 2$

(3) Signal: $p_{T1} \sim p_{T2} \sim p_{T3} \sim p_{T4}$ Backgrounds: $p_{T1} \gg p_{T2} \gg p_{T3} \gg p_{T4}$ so keep event only if $p_{Ti} > p_{cutoff}$ for all 4 jets

Discovery potential for $: m_{\tilde{ ho}} = 350 \text{ GeV}$

Signal: 2.7 pb passing selection criteria Background: 21 pb passing criteria

Discovery potential for $: m_{\tilde{ ho}} = 350 \, { m GeV}$

Signal: 2.7 pb passing selection criteria Background: 21 pb passing criteria $\sqrt{\sum_{\text{bins}} \left(\frac{S}{\sqrt{B}}\right)^2} = 32!$

Discoverable in existing Tevatron data!

Conclusions

A broad class of simple extensions of the SM:

Backup slides

The Di-CHAMP/Multi-photon Benchmark

The Di-CHAMP/Multi-photon Benchmark

	$SU(3)_{HC}$	$SU(3)_C$	$\mathrm{SU}(2)_{\mathrm{L}}$	$\mathrm{U}(1)_{\mathrm{Y}}$	
ψ_1	3	1	1	-1	N=F=3, exactly like QCD!
ψ_2	3	1	2	1/2	→ Calculable!

 $\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} H^a_{\mu\nu} H^{a\mu\nu} + \overline{\psi}_1 i D \psi_1 - m_1 \overline{\psi}_1 \psi_1 + \overline{\psi}_2 i D \psi_2 - m_2 \overline{\psi}_2 \psi_2 + \frac{\theta_H}{4} \epsilon^{\mu\nu\rho\sigma} H^a_{\mu\nu} H^a_{\rho\sigma}$

	Color	Charge	Mass	Decays to
$ ilde{\pi}_{ ext{T}}^{0}$	—	0	$m_{ m T}$	$W^+W^-, ZZ, Z\gamma, \gamma\gamma$
$ ilde{\pi}_{\mathrm{T}}^{\pm}$	—	± 1	$m_{\mathrm{T}} + \delta m_{\mathrm{T}}$	$W^{\pm}Z, W^{\pm}\gamma$
$\tilde{\pi}_{\mathrm{D}}^{\pm}$	_	± 1	$m_{ m D}$	_
$\tilde{\pi}_{\mathrm{D}}^{\pm\pm}$	—	± 2	$m_{\rm D} + \delta m_{\rm D}$	$\tilde{\pi}_{\mathrm{D}}^{\pm}W^{\pm*}$
$ ilde{\pi}_{ m S}$	—	0	$m_{ m S}$	$\gamma\gamma,(\gamma Z,ZZ)$

$$\begin{split} m_{\rm T}^2 &= \frac{3am_{\tilde{\rho}}^2}{16\pi^2} \cdot 2g_2^2 + 6bm_{\tilde{\rho}}m_2 \,, \\ m_{\rm D}^2 &= \frac{3am_{\tilde{\rho}}^2}{16\pi^2} \left(\frac{3}{4}g_2^2 + \frac{9}{4}g_1^2\right) + 3bm_{\tilde{\rho}}(m_2 + m_1) \,, \\ m_{\rm S}^2 &= 2bm_{\tilde{\rho}}(m_2 + 2m_1) \,, \end{split}$$

$$\mathcal{L}_{\tilde{\pi}_{\rm D} \, \text{decay}} = \frac{c_{ij}}{M^2} J_{5\rm D}^{\mu} e_{Ri}^{\rm T} \mathcal{C} \gamma_{\mu} \ell_{Lj} \qquad \qquad J_{5\rm D}^{\mu} = \overline{\psi}_1 \gamma^{\mu} \gamma_5 \psi_2$$

The R-hadron Benchmark

	$SU(3)_{HC}$	${ m SU}(3)_{ m C}$	${ m SU}(2)_{ m L}$	$U(1)_{Y}$
ψ_1	3	1	1	1
ψ_3	3	3	1	-1/3

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} H^a_{\mu\nu} H^{a\mu\nu} + \overline{\psi}_1 i D \psi_1 - m_1 \overline{\psi}_1 \psi_1 + \overline{\psi}_3 i D \psi_3 - m_3 \overline{\psi}_3 \psi_3 + \frac{\theta_H}{4} \epsilon^{\mu\nu\rho\sigma} H^a_{\mu\nu} H^a_{\rho\sigma}$$

	Color	Charge	Mass	Decays to
$ ilde{\pi}_8$	8	0	$m_{ ilde{\pi}_8}$	$gg \gg gZ, g\gamma$
$ ilde{\pi}_3$	3	-4/3	$m_{ ilde{\pi}_3}$	collider stable
$ ilde{\pi}_1$	1	0	$m_{ ilde{\pi}_1}$	$gg \gg \gamma\gamma \gg \gamma Z, ZZ$

$$\begin{split} m_{\tilde{\pi}_8}^2 &= \frac{3am_{\tilde{\rho}}^2}{16\pi^2} \cdot 3g_3^2 + 6bm_{\tilde{\rho}}m_3 \,, \\ m_{\tilde{\pi}_3}^2 &= \frac{3am_{\tilde{\rho}}^2}{16\pi^2} \left(\frac{4}{3}g_3^2 + \frac{16}{9}g_1^2\right) + 3bm_{\tilde{\rho}}(m_3 + m_1) \,, \\ m_{\tilde{\pi}_1}^2 &= \frac{3b}{2}m_{\tilde{\rho}}(m_3 + 3m_1) \,, \end{split}$$

$$\mathcal{L}_{\tilde{\pi}_3 \text{ decay}} = \frac{c_{ij}}{M^2} P_3 d_{Ri}^{\mathrm{T}} \mathcal{C} e_{Rj} \qquad P_3 = \overline{\psi}_1 \gamma_5 \psi_3$$

The R-hadron Benchmark

mass point	$m_{\tilde{\rho}} (\text{TeV})$	$m_{\tilde{\pi}} \; (\text{GeV})$
1	1.5	300
2	1.5	600
3	1.0	300
4	2.5	500

The Tevatron Multijet Model

Literally copy the QED-QCD system:

Then, we can "analog compute" everything!

 $\begin{array}{cccc} & \Gamma_{\rho^{0} \rightarrow e^{+}e^{-}} & \longrightarrow & \widetilde{\rho} - q - \overline{q} \text{ coupling} \\ & \Gamma_{\rho^{0} \rightarrow \pi^{+}\pi^{-}} & \longrightarrow & \widetilde{\rho} - \widetilde{\pi} - \widetilde{\pi} \text{ coupling} \\ & \Gamma_{\pi^{0} \rightarrow \gamma\gamma} & \longrightarrow & \widetilde{\pi} - g - g \text{ coupling} \\ & (m_{\pi^{\pm}}^{2} - m_{\pi^{0}}^{2})/m_{\rho}^{2} & \longrightarrow & m_{\widetilde{\pi}}^{2}/m_{\widetilde{\rho}}^{2} \end{array}$ $\begin{array}{c} & Only \text{ one parameter } & m_{\widetilde{\rho}} & ! \end{array}$

T. OKUI (JHU&UMD)

What if we don't pair up jets?

Signal : 3.6 pb passing cuts Background: 66 pb passing cuts

$$\sqrt{\sum_{\text{bins}} \left(\frac{S}{\sqrt{B}}\right)^2} = 13,$$

BUT too subtle to tell...