Discovering New Physics with Early CMS Data

Greg Landsberg

Aspen Winter Conference on Particle Physics January 20, 2010

Outline

- Why looking beyond the Standard Model?
 You know the answer!
- Plan of attack
- Discovering new physics with early LHC data*
- Conclusions

*) Chose to focus on a few characteristic and recent examples, rather than being too inclusive

I would like to thank the organizers for a kind invitation and a great conference!

2010 Aspen Winter Conference Greg Landsberg - Discovering New Physics with Early CMS Data

We Live in Precision Times...

2010 Aspen Winter Conference Greg Landsberg - Discovering New Physics with Early CMS Data

Wednesday, January 20, 2010

4

The only Higgs observed in Nature

2010 Aspen Winter Conference Greg Landsberg - Discovering New Physics with Early CMS Data

4

The only Higgs observed in Nature

The only stop decay observed in Nature

2010 Aspen Winter Conference

Greg Landsberg - Discovering New Physics with Early CMS Data

The only Higgs observed in Nature

The only dark matter observed in Nature

The only stop decay observed in Nature

2010 Aspen Winter Conference

Greg Landsberg - Discovering New Physics with Early CMS Data

Wednesday, January 20, 2010

4

The only Higgs observed in Nature

The only dark matter observed in Nature

The only stop decay observed in Nature

Greg Landsberg - Discovering New Physics with Early CMS Data

2010 Aspen Winter Conference

The LHC Roadmap 2009-2011

- December 2009 first collisions at 0.9 and 2.36 TeV
 - Little data, but spectacular detector performance (see Christos Leonidopoulos's talk on Monday, 1/18/10)
- January 2010 technical stop to commission quench protection system
 - CMS to fix faulty water cooling connectors in the muon system
- February 2010 LHC turns on
 - Detailed steps to be decided at the Chamonix meeting next week
 - Clear signal from both experiments to go to 7 TeV collisions ASAP
 - Run 2-3 months at 7 TeV; decide on possible higher energy (up to 10 TeV)
- Revised 2010 goal: up to 0.5 fb⁻¹ of integrated luminosity
- Possible operation in 2011 at ~10 TeV with ~10x more data

- Tentative schedule; to be replaced with the new draft after the Chamonix meeting (next week)
- Proposed 2010 proton physics program:
 - 1 month commissioning and pilot physics
 - 1-2 month @ 7 TeV
 - 1 month Technical Stop
 - 4-5 months @ >7 TeV

Search Sensitivity vs. Energy

- Typical limits for NP from the Tevatron correspond to the c.o.m. energy of ~0.7-1.0 TeV (e.g., LQ's, Z', squark/gluinos)
- For a 1 TeV invariant mass final state one needs roughly 2.5 times the luminosity at 10 TeV than at 14 TeV
 - For the 7 TeV running the ratio is approximately 6
 - 7 TeV running requires roughly twice the luminosity of 10 TeV running
- For lighter states (e.g. excited leptons, or pair-produced leptoquarks) the effect is not as large; hence an early discovery is possible even at 7 TeV with O (100 pb⁻¹)

rence Greg Landsberg - Discovering New Physics with Early CMS Data

CMS

New Physics Analysis Highlights

- While it's impossible to cover all the analyses in such a short talk, I'd like to highlight some of the recent results
- Broadly speaking, with the early data (50-500 pb⁻¹) we have sensitivity beyond LEP/Tevatron for:
 - Singly-produced objects with EW couplings (including the propagator)
 - Pair-produced colored objects
- Hence, we want to look for:
 - W'/Z', KK resonances, compositeness, extra dimensions, black holes, l*
 - Technicolor, 4th generation quarks, LQ's, low-mass SUSY
 - Stopped gluinos, HSCP's

QCD as an Avenue to New Physics

- Inclusive jet cross
 Imp
 section measurement
 cont
 - Impressive sensitivity for contact interactions

More in Nikos Varelas's talk (Monday, 1/18/10)

Leptoquarks

- LQ1 → ej: eejj final state
- Simple counting experiment, no mass fit
- S⊤ (scalar sum of all object E⊤'s) is the best single variable
- LQ2 \rightarrow µj: µµjj final state
- Similar analysis
- High sensitivity with early data

Large Extra Dimensions in yy

- Virtual graviton effects in the diphoton channel
- Higher sensitivity than ee or μμ
- Generic compositenesslike search for overall enhancement of the M_{γγ} spectrum
- Dominant background is due to direct diphotons (obtained by normalizing at low masses)
- Use M_{YY} > 700 GeV cut and central photons
 - B = 0.40 events
 - Low background allows for other searches

2010 Aspen Winter Conference

Large Extra Dimensions in yy

- Virtual graviton effects in the diphoton channel
- Higher sensitivity than ee or μμ
- Generic compositenesslike search for overall enhancement of the M_{γγ} spectrum
- Dominant background is due to direct diphotons (obtained by normalizing at low masses)
- Use M_{YY} > 700 GeV cut and central photons
 - B = 0.40 events
 - Low background allows for other searches

2010 Aspen Winter Conference

Large Extra Dimensions in yy

- Virtual graviton effects in the diphoton channel
- Higher sensitivity than ee or μμ
- Generic compositenesslike search for overall enhancement of the M_{γγ} spectrum
- Dominant background is due to direct diphotons (obtained by normalizing at low masses)
- Use M_{YY} > 700 GeV cut and central photons
 - B = 0.40 events
 - Low background allows for other searches

2010 Aspen Winter Conference

RS Gravitons and Unparticles

Large ED analysis can be reused in inventive ways:

- Low background above a certain mass value
- Search for γγ resonances (e.g. RS gravitons)
- Search for other diphoton spectrum enhancements (e.g. due to unparticles)

PAS-EXO-09-011

RS Gravitons and Unparticles

Large ED analysis can be reused in inventive ways:

- Low background above a certain mass value
- Search for γγ resonances (e.g. RS gravitons)
- Search for other diphoton spectrum enhancements (e.g. due to unparticles)

PAS-EXO-09-009

PAS-EXO-09-011

CMS

Boosted Top

Monojets and Majorana Neutrino

- Complementary way to search for large ED
- High-p⊤ single jet

 Majorana neutrino with flavor violation in like-sign dileptons

4th Generation Searches

- Two b' analyses: FCNC bZ and tW decay channels
 - Trilepton and same-sign dilepton final states
 - Relatively low backgrounds; sensitivity exceeds that at the Tevatron with just O(50 pb⁻¹)
 - Shy of discovery in the first run, but significant exclusion potential; 3σ evidence up to 400 GeV

Narrow Resonance Searches

Exotic Top Partners

- Exotic T_{5/3} and B quarks, decaying into t(bW)W
 - Two same-sign leptons and five or more jets
 - Top pair production is the major background
- Discovery potential up to ~400 GeV
- Exclusion up to ~500 GeV

PAS-EXO-08-008

2010 Aspen Winter Conference Greg Landsberg - Discovering New Physics with Early CMS Data

Wednesday, January 20, 2010

17

SUSY - an Early Discovery?

- Even with little statistics the reach will be expanded dramatically compared to the Tevatron limits
- The trick is to be able to understand missing E_T

Wednesday, January 20, 2010

SUSY - an Early Discovery?

- Even with little statistics the reach will be expanded dramatically compared to the Tevatron limits
- The trick is to be able to understand missing E_T

Wednesday, January 20, 2010

...and We Do (ME_T in Real Data)!

 Very encouraging performance seen in first LHC collision data: both PF and Calorimeter based MET

Plan B?

What if ME_T tails in early data are hard to understand?

- Still could do hadronic search based on exclusive n-jet events
- Define the variable: $\alpha_T = E_T^{j2}/M_T$ [a la Randall/Tucker-Smith, PRL 101, 221803 (2008)], where:

$$\mathbf{M}_{\mathrm{T}} = \sqrt{\left(\sum_{i=1}^{n} E_{\mathrm{T}}^{j_{i}}\right)^{2} - \left(\sum_{i=1}^{n} p_{x}^{j_{i}}\right)^{2} - \left(\sum_{i=1}^{n} p_{y}^{j_{i}}\right)^{2}} = \sqrt{H_{\mathrm{T}}^{2} - (H_{\mathrm{T}}^{\mathrm{miss}})^{2}}$$

Good separation between QCD background and SUSY signal

10 TeV Projection

- Detailed studies in several channels are ongoing
- A simple projection from scaling in the all-hadronic channel is available

Greg Landsberg - Discovering New Physics with Early CMS Data

Wednesday, January 20, 2010

2010 Aspen Winter Conference

10 TeV Projection

- Detailed studies in several channels are ongoing
- A simple projection from scaling in the all-hadronic channel is available

2010 Aspen Winter Conference

Greg Landsberg - Discovering New Physics with Early CMS Data

Stopped Gluino Search

- Long-lived gluinos are predicted in a number of models, e.g., split SUSY
- Strongly produced, they hadronize and eventually stop in the dense detector material (if charged and have low β)
- Decay microseconds to days (or even months!) later
- Look for such decays in HCAL during beam-off time
- Designed and commissioned a special beam-gap trigger

2010 Aspen Winter Conference Greg Landsberg - Discovering New Physics with Early CMS Data

- Estimated discovery potential for a 300 GeV gluino at L = 10³¹⁻³² cm⁻²s⁻¹ and a nominal 12-hour LHC operational cycle
- Note that instantaneous luminosity is the key: significance increases only as L x sqrt(t), not usual sqrt(Lt), since the background doesn't depend on L

Other Topics of Early Interest

- Excited electrons and muons
- W'/W_R searches
- LQ searches with β < 1
- Searches with taus (including LQ3)
- Searches for highly ionizing slow-moving particles and non-promptly decaying new particles
- Generic deviations from the SM predictions (High-H_T, MUSIC, etc.)
- Search for black holes and string balls
- And of course something COMPLETELY UNEXPECTED!

2010 Aspen Winter Conference Greg Landsberg - Discovering New Physics with Early CMS Data

Black Holes in CMS

LHC cmseye07 2008-09-10

2010 Aspen Winter Conference

Greg Landsberg - Discovering New Physics with Early CMS Data

Wednesday, January 20, 2010

25

Conclusions

- We all hope to see clear peaks ahead (and maybe even some hidden valleys behind)
- 2010 is going to be an exciting year!

2010 Aspen Winter Conference Greg Landsberg - Discovering New Physics with Early CMS Data

26

... and Watch the CNN!

2010 Aspen Winter Conference Greg

Greg Landsberg - Discovering New Physics with Early CMS Data