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Higgs and LHC

Minimal scenarios (e.g. SM or MSSM) don’t have to be
true, but it's hard to get by w/o some sort of a light
Higgs

With no Higgs discovery at the Tevatron, the matter is
firmly in the hands of LHC

If discovered, next equally important step is figuring out
what is it we found

Phenomenology and LHC reach depend on Higgs
mass

Without special enhancements (like SUSY), discovery of
a “lighter” light higgs (m<120 GeV) will require larger
luminosity

For benchmarking mostly use SM higgs, which can be
easily re-interpreted for more complex models
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Current Experimental Landscape

Direct exclusions:

Tevatron Run Il Preliminary, L=0.9-4.2 b’

LEP: m>114 GeV g e B
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Higgs Production at the LHC

Dominated by gluon fusion

Large decay modes often come
with large backgrounds

Vector Boson Fusion (VBF)

While smaller cross section, offers
cleaner final states by tagging
forward jets

Associated Production

Even smaller cross-section,
backgrounds likely a major issue

Uncovering full Higgs story will
require use of all accessible
modes and many decay channels

Early searches will mainly focus
on first two production channels
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Higgs Search Strategies

Sensitivity strongly depends on
backgrounds for a specific
decay channel:

Range above ~135 GeV:

WW/ZZ decay modes

Clean final states with leptons,
any production mode will do

Range below ~135 GeV:

H—yy: small BR is the main
— challenge, need appreciable
luminosity

H—1t: large backgrounds, use
VBF to improve sensitivity
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H—yy: Selections

Initial Selections:
2 photon candidates in |n|<2.5
E+(v4)>40, E1(v,)>35 GeV

Isolation: no tracks w/ p>1.5 GeV in AR<0.3

Normallzed to 1 fb 1 at 14 TeV
Calorimeter Isolation: >+ 2 Hlom a0 aov feie)

[71 Higgs M,=130 Ge V( 10)

ECAL clusters: 750 = Higgs Mer20 Gov (D)

E3 Higgs M;=115 GeV (x10)

(7]
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. (] [ ee Drell Yan 7
ZE < 6(3) GeV In ﬁ 400._j‘ [ jets p,,, > 50 GeV —]
T L] [71 y+jets (1 prompt y + 1 fake) -

O 5 0 6 <A R< O . 3 5 fO r 300 zl_ﬂ___l ' § r g ::i;:sx{Z prompt 1)
Central (Endcap) wﬂlj | B boen
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(Endcap) Small bump over large background:
Good mass resolution is critical
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H—yy: Categorization

To check if there is additional hidden potential,
break into categories:

uuuuuuuuuuuuuuuuuu

Events/ 2 GeV
s223RE228

3 bins: |n| of the less

central photon

4 bins: Rg=EE

of less narrow photon
Very different S/B and
reducible/irreducible
background fractions
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-
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. Categorization

Analysis So S50 30 30 95% 95% . L
discovery  discovery | evidence evidence | exclusion exclusion |mproveS SenS|t|V|ty
no syst no syst  syst no syst syst

counting exp. | 27.4 10.0 132 45 6.5 Makes sense to use

1 category 245 8.9 11.5 4.1 5.8

4 categories | 21.3 75 9.1 3.5 4.8 more elaborate

12 categories | 19.3 7.0 8.1 3.2 4.4
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H—yy: Neural Net

NN to quantify level of isolation for each photon:
Ison(Y4), ISONN(Y2)

Other variables: “f7a T T EE= i
ET(y1 )/Myy ‘° -m : 10’
Er(1,)M,, |
|T]1'T]2| b e ] 1ng~£‘.2
PL(v172)

Categorize by:
R9=ET3X3/ETCI
BB and BE+EE

% 02 04 06 08 1 12 14 186 LBIII"I'[J’ % 50 100 150

Use sidebands in mass distribution for real data analysis
At least something good from having large backgrounds
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I WH, ZH, ttH (times 50)

H—yy: Neural Net

Check that NN is doing what ; eceee
it's supposed to do -

] -+t (2 prompt)
I eoc

10° | . eon

Ultimate categorizationisto
calculate S/B for each event

Define estimated s/b ol

Events

0. . J X 0.8 09 1
(s/b)..; = (s/b) . x (s/b)
o 90 e T A I WH, ZH, tH (X10) [ T T
! : L £H, _ I WH, ZH, ttH (X10)
§ L i : : H, Weak Boson Fusion (X10) g = [ H, Weak Boson Fusion (X10)
luon fusion (X10, = C
I 800 Rt (X10) o 70 | I M, gluon fusion (X10)
= jetsiet C 0 jet+jet
200 [ v+iet {1 prompt) E [ v+jet (1 prompt)
[ v-jet (2 prompt) 60 - “| [ y+jet (2 prompt)
I Box T
600 l H eon
500 &2 U

A. Safonov, Aspen Winter Conference, January 19, 2010 9



H—yy: Neural Net

Plot Log(s/b) for all events

At this time it is ok to
combine different categories

Use It to calculate exclusion

and discovery levels vs Lumi
Trial factors weaken reach
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H—tt Analysis

An important confirmation (if seen in h—yy) or a
discovery channel (e.g. some SUSY scenarios)

Critical verification of Yukawa nature of Hff coupling
requires two channels

Main challenges:

Relatively soft spectrum of visible tau decay products
due to escaping neutrinos

Large backgrounds

Hadronic taus look too much like QCD jets, fully leptonic
modes have low branching fractions
B(t—1,,4) = 64%, B(t—pvv) = B(t—evv) = 18%
Wide shape of the signal distribution (neutrinos)
Difficult to distinguish from irreducible Z—1t

Collinear approximation suffers a lot from MET resolution
effects
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H—tt Analysis Selections

Rely on VBF production and tag forward jets to
reduce backgrounds:

2 jets E->30 GeV in |n|<4.5
1n1Xn,<0, M;>400 GeV
Use tt — e/u + 1,,,4vvv decay mode:

Electron: E->15 GeV, |n|<2.4, fiduciality, tight
Isolation

Muon: p>15 GeV, |n|<2.1, isolation

— Hadronic Tau: E;>30, |n|<2.4, tight track

isolation (essentially only 1-prongs selected)
Electron/muon rejection and quality selections
Tau ¢=36% for E;:>40 GeV, jet mis-ID rate=3%
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H—1t Mass Spectrum

Use collinear approximation

Better sensitivity than simple |+t,, mass

Background control is the main

challenge

Dominated by Z+jets events, control 4

not trivial even for Z's (e.g. VBF cut 3
efficiency) 2
1

Likelihood fit of the distribution
LLR to calculate 95% CL limits

10

0
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H—rt: Tackling Challenges

One important challenge is reueeimmn]

poor H-Z separation in the 3 ;;;2\“\ B
mass plot £ o X -
Improvements can come & 7 Th.
from a better use of T T S,
kinematics differences oo
’? T
(MVA : ) [ CMS Preliminary |
Or better MET resolution 3 « ]
to sharpen the two peaks 4 T
Particle Flow algorithm o e
developed at CMS can e |
help there siy 4 Particle Flow

see illustrations
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H—rt: Tackling Challenges

CMS Preliminary

Another important challenge is © Sency
low tau ID efficiency: b .
One example — improved N DI 4
electron rejection f L e
Lower E; suffers the most: 7
. .L: __/-a/ﬂ - ap
Recent developments in tau ID | SOCS e eaneuill NUUUE SOUVE DOUNE OO
improve eff in E;=20-40 GeV S
Tnaq Efficiency
CMS Preliminary Fixed Cone CMS Preliminary shrinking cone .
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Outlook

It is fairly clear that the low Higgs mass range
will remain a challenge until

either LHC accumulates a few fb-! of data

... or if Nature enhanced Higgs production
cross-section (MSSM w/ tan=«? :)

... or offered a new clean channel, e.g. NMSSM
with light a, decaying to muons and a large

B(h,—a,a,)
An illustration to follow if time permits
In the meantime we should continue diligently
working on understanding our detector and
improving analysis techniques to be ready for
discovery when the time comes
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NMSSM with Light CP-odd Higgs

Extended Higgs sector in NMSSM o —— :

contains a light (possibly below 2t
threshold) CP-odd a,

Such a, would often decay to up

For large B(h,—a,a,), a new important
channel h1—>a1a1—>uuuu m, (GeV)

Near zero backgrounds and multiple built-in constraints:
Masses m(p, 1p)=M(ps, ka) =My, M(Lq, Hp, Hg, g )=M

C
=
C [ Muon pairs invariant mass |
(] mass, GeV
(7)) 4000 Higgs mass, GeV
05 F
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* Not a CMS analysis yet, only a pheno study
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Constraints from Current Data

Strong constraints from WMAP and LEP (m,, below 90
GeV excluded)

Additional constraints from recent Tevatron data (DO)
using h—aa—uupp signature

Large fraction of
parameter space
remains
unconstrained

Tevatron will
need a huge
Increase in data
to dig into it

0.3
0.2

Belyagv, Pivarski, AS, §enkin

Should be accessible by LHC with an order of ~100 pb™! of
data
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NMSSM with Light a, at LHC

At 14 TeV, already 100 pb-! of LHC data will
significantly expand the Tevatron reach

Statement softens but remains true for lower
LHC energies

If we are lucky, new physics can reveal itself
very soon

*Not a CMS anaIyS|S yet, only a pheno study
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