
Housekeeping

The Life of an Open-Source Project
David Garcia Quintas

Xoogler, gRPC C Core Team
dgquintas@gmail.com

https://www.linkedin.com/in/davidgarciaquintas/
mailto:dgquintas@gmail.com

Housekeeping How I Got Here

Housekeeping Agenda

● Why develop [a new project] in open-source.

● What is being developed: gRPC.

● How is it being developed: the process.

Housekeeping A sampling of OSS at Google

Housekeeping A sampling of OSS at Google

Housekeeping

Housekeeping Why?

● Google has had 4 generations of internal RPC
systems, called Stubby
○ All production applications and systems built

using microservices connected by RPCs
○ Over 1010 RPCs per second, fleetwide
○ APIs for C++, Java, Python, Go
○ Not suitable for open-source community (Tight

coupling with internal tools)
○ Not suitable for open Internet (proprietary wire

protocol won’t work with firewalls, etc)

Housekeeping

● gRPC Remote Procedure Calls.
● High performance, open source, general purpose, standards-based,

feature-rich RPC framework.
○ HTTP-2 based transport
○ Standards-based flow-control, auth, LB, etc.

● Developed by Google, donated to CNCF
○ Development is Github-first
○ github.com/grpc

What?

https://github.com/grpc/

Housekeeping
● Java
● Go
● C/C++
● C#
● Node.js
● PHP
● Ruby
● Python
● Objective-C

Service definitions and client libraries

● Swift
● Haskell
● Rust
● Typescript
● ….

More Languages...

Pull
Request

Automated
tests

Code
Review

Merged
onto

master

Automated
tests

Code
Review

Imported
internally

Released

eventually

Development Process

Monitored
by build cop.

Continuous
testing.

Development Process: Code Review

Development Process: Testing

Development Process: Testing
Tens of thousands of tests run per PR and continuously on master.

{windows, mac, linux} x {bazel, make} x
{asan, msan, tsan, ubsan} x {opt, dbg} x

 {C Core tests, C++ tests}

+

microbenchmarks + binary size
+ {Python, Ruby, iOS, PHP, C#, Node.js}

+ interop (all client/server pairs of Java, Go,
C-wrapping languages).

Development Process: Build Cop
Monitors increases in test flakiness + performance from the master CI runs

Merged
onto

master

Continuous
testing.

BigQuery
Results

Dashboards

Query (SQL)

https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://performanceedit-dot-grpc-testing.appspot.com/explore?dashboard=5661273836486656
https://performanceedit-dot-grpc-testing.appspot.com/explore?dashboard=5661273836486656
https://performanceedit-dot-grpc-testing.appspot.com/explore?dashboard=5661273836486656
https://performanceedit-dot-grpc-testing.appspot.com/explore?dashboard=5661273836486656

Development Process: Build Cop

http://performance-dot-grpc-testing.appspot.com/explore?dashboard=5685265389584384
http://performance-dot-grpc-testing.appspot.com/explore?dashboard=5685265389584384

Pull
Request

Automated
tests

Code
Review

Merged
onto

master

Automated
tests

Code
Review

Imported
internally

Released

eventually

Development Process

Monitored
by build cop.

Continuous
testing.

Development Process: Internal Import

github

Changelist
(CL)

Import
Script

Internal
automated tests

Internal
code review

google
code
repo

while (next importer in rotation) {

}

Development Process: Releases
tag release

generate
packages

compile
release notes

publish &
announce RC

sleep 1 weekfix issues release

sleep 6 weeksadd tests

Development Process: Releases/Release Notes

Development Process: Office Hours

Stackoverflow #grpc

Internal users
mailing list

External users
mailing list

Java

Go

C-wrapping langs.

Walk-ins

Weekly
Rotation

Pull
Request

Automated
tests

Code
Review

Merged
onto

master

Automated
tests

Code
Review

Imported
internally

Released

eventually

Development Process

Monitored
by build cop.

Continuous
testing.

Housekeeping Keeping the Community Engaged
● Foster understanding between devs and community

○ Set expectations
● Establish community Meetups

○ Place for community to meet with team, put faces to
names, press strongly for feature requests, bug fixes, etc

○ Showcase for interesting and often unexpected use cases
● Establish processes for making changes

○ gRFC - seek community input for 2 weeks before
converging on new features

● Improve documentation and empower community

Housekeeping An empowered community

Housekeeping Adoption

Microservices: in data centers

Streaming telemetry from
network devices

Client Server comm. /
Internal APIs

Mobile Apps

Housekeeping What [IMO] makes a great OSS project
● Valuable software role for the community
● Clean licensing for maximum utility
● Is well-supported, managed, and maintained. Signal commitment.
● Code quality and testing
● Continuous improvement
● Prompt and predictable release cycle
● Easy to get started: Installation, documentation
● Feedback from users and understanding of their use cases

All of which facilitate an engaged and vibrant community

Housekeeping What [IMO] is probably not important

● Code contributor population
○ Most users of open-source never actually open the source
○ Being open-source > just free: community can extend & self-sustain

● Development model
○ OSS-first with internal uptake
○ Internal-first with external releases

Housekeeping

In
Summary

Housekeeping

OSS development is harder

○ The world is a big place, more systems/configs.
○ Increased overhead from community.
○ Restricted to external tools...
○ ... or you'll need to roll your own.

Housekeeping

OSS development is harder, but...

✓ Improves org's PR/goodwill.
✓ Attracts talent.
✓ External scrutiny: keeps you honest.
✓ Gateway to the organization.
✓ Enables contributions.

Thank you!

