
Housekeeping 

The Life of an Open-Source Project
David Garcia Quintas

Xoogler, gRPC C Core Team
dgquintas@gmail.com

https://www.linkedin.com/in/davidgarciaquintas/
mailto:dgquintas@gmail.com


Housekeeping How I Got Here



Housekeeping Agenda

● Why develop [a new project] in open-source.

● What is being developed: gRPC.

● How is it being developed: the process.



Housekeeping A sampling of OSS at Google
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Housekeeping Why?

● Google has had 4 generations of internal RPC 
systems, called Stubby
○ All production applications and systems built 

using microservices connected by RPCs
○ Over 1010 RPCs per second, fleetwide
○ APIs for C++, Java, Python, Go
○ Not suitable for open-source community (Tight 

coupling with internal tools)
○ Not suitable for open Internet (proprietary wire 

protocol won’t work with firewalls, etc)



Housekeeping 

● gRPC Remote Procedure Calls.
● High performance, open source, general purpose, standards-based, 

feature-rich RPC framework.
○ HTTP-2 based transport
○ Standards-based flow-control, auth, LB, etc.

● Developed by Google, donated to CNCF
○ Development is Github-first
○ github.com/grpc

What?

https://github.com/grpc/


Housekeeping 
● Java
● Go
● C/C++
● C#
● Node.js
● PHP
● Ruby
● Python
● Objective-C

Service definitions and client libraries

● Swift
● Haskell
● Rust
● Typescript
● ….

More Languages...
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Development Process: Code Review
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Development Process: Testing
Tens of thousands of tests run per PR and continuously on master.

{windows, mac, linux} x {bazel, make} x
{asan, msan, tsan, ubsan} x {opt, dbg} x

 {C Core tests, C++ tests}

+ 

microbenchmarks + binary size
+ {Python, Ruby, iOS, PHP, C#, Node.js} 

+ interop (all client/server pairs of Java, Go, 
C-wrapping languages).



Development Process: Build Cop
Monitors increases in test flakiness + performance from the master CI runs

Merged
onto

master

Continuous
testing.

BigQuery
Results

Dashboards

Query (SQL)

https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://performanceedit-dot-grpc-testing.appspot.com/explore?dashboard=5661273836486656
https://performanceedit-dot-grpc-testing.appspot.com/explore?dashboard=5661273836486656
https://performanceedit-dot-grpc-testing.appspot.com/explore?dashboard=5661273836486656
https://performanceedit-dot-grpc-testing.appspot.com/explore?dashboard=5661273836486656


Development Process: Build Cop

http://performance-dot-grpc-testing.appspot.com/explore?dashboard=5685265389584384
http://performance-dot-grpc-testing.appspot.com/explore?dashboard=5685265389584384
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Development Process: Internal Import

github

Changelist 
(CL)

Import
Script

Internal
automated tests

Internal
code review

google
code
repo

while (next importer in rotation) {

}



Development Process: Releases
tag release

generate 
packages

compile
release notes 

publish & 
announce RC

sleep 1 weekfix issues release

sleep 6 weeksadd tests



Development Process: Releases/Release Notes



Development Process: Office Hours

Stackoverflow #grpc

Internal users
mailing list

External users
mailing list

Java

Go

C-wrapping langs.

Walk-ins

Weekly
Rotation
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Housekeeping Keeping the Community Engaged
● Foster understanding between devs and community

○ Set expectations
● Establish community Meetups

○ Place for community to meet with team, put faces to 
names, press strongly for feature requests, bug fixes, etc

○ Showcase for interesting and often unexpected use cases
● Establish processes for making changes

○ gRFC - seek community input for 2 weeks before 
converging on new features

● Improve documentation and empower community



Housekeeping An empowered community



Housekeeping Adoption

Microservices: in data centers

Streaming telemetry from 
network devices

Client Server comm. / 
Internal APIs

Mobile Apps



Housekeeping What [IMO] makes a great OSS project
● Valuable software role for the community
● Clean licensing for maximum utility
● Is well-supported, managed, and maintained. Signal commitment.
● Code quality and testing
● Continuous improvement
● Prompt and predictable release cycle
● Easy to get started: Installation, documentation
● Feedback from users and understanding of their use cases

All of which facilitate an engaged and vibrant community



Housekeeping What [IMO] is probably not important

● Code contributor population
○ Most users of open-source never actually open the source
○ Being open-source > just free:  community can extend & self-sustain

● Development model
○ OSS-first with internal uptake
○ Internal-first with external releases
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In 
Summary



Housekeeping 

OSS development is harder

 
○ The world is a big place, more systems/configs.
○ Increased overhead from community.
○ Restricted to external tools...
○ ... or you'll need to roll your own.



Housekeeping 

OSS development is harder, but...

 

✓ Improves org's PR/goodwill.
✓ Attracts talent.
✓ External scrutiny: keeps you honest. 
✓ Gateway to the organization.
✓ Enables contributions. 



Thank you!


