

IHEP Site Report

4th Asia Tier Forum, Bangkok

Shi, Jingyan shijy@ihep.ac.cn

Computing Center, IHEP

Outline

- **Introduction to IHEP-CC**
- (2) Computing, Storage and Network Resources
- Architecture and Services
- 4 Beijing LCG Tier 2 Site
- **Summary**

Experiments We Support

BESIII (Beijing Spectrometer III at BEPCII)

DYB (Daya Bay Reactor Neutrino Experiment)

JUNO (Jiangmen Underground Neutrino Observatory)

YBJ (Tibet-ASgamma ARGO-YBJ Experiments)

LHAASO (Large High Altitude Air Shower Observatory)

HXMT(Hard X-Ray Moderate Telescope)

HEPS (High Energy Photon Source)

Outline

- **Introduction to IHEP-CC**
- (2) Computing, Storage and Network Resources
- **Architecture and Services**
- **Beijing LCG Tier 2 Site**
- **Summary**

Computing Resources

- HTCondor cluster
 - HTC jobs: series jobs
 - ~13,400 CPU cores
- Slurm clusters
 - Cpu nodes + GPU nodes
 - HPC jobs: parallel jobs + GPU jobs
 - 3,384 CPU cores + 8 GPU cards
 - 80 GPU cards will be added
- Grid site (WLCG)
 - Tier 2 site
 - 1,200 CPU Cores
 - 1000 CPU cores for LHCb will be added

- The BESIII DIRAC-based distributed computing system
 - ~ 3,500 CPU cores
- IHEPCloud based on Openstack
 - ~ 2,000 CPU cores

Storage Resoruce

- Local cluster
 - 15 PB+ disk storage

• Lustre: 11 PB

• EOS: 2.3PB

• Other: 1.5PB

- 5 PB tape storage: Castor
- Grid site

DPM: 400TB

dCache: 540TB

International Network

■ IHEP joined LHCONE (LHC Open Private Network) in March, 2018.

DC Network Topology

- From single Core switch to double Core Switches with VRRP-E (Brocade VDX 8770)
 - VRRP extended (VRRP-E) is an extended version of the VRRP protocol. Brocade developed VRRP-E as a proprietary protocol to address some limitations in standards-based VRRP
 - ISL(inter switch link) 80G
 - Uplink 80G
 - Backbone bandwidth 160G
 - Storage server 20G
- Network equipments
 - 2 Core switch VDX 8770
 - 20 10G ToR Switch
 - 25 1G ToR Switch

Outline

- 1
- **Introduction to IHEP-CC**

2

Computing, Storage and Network Resources

3

Architecture and Services

4

Beijing LCG Tier 2 Site

5

Summary

HPC+HTC Architecture

HTC Shared Scheduling Policy

- New scheduling policy for HTCondor cluster
 - Resource contributed by all experiments
 - A shared pool includes the most job slots accept jobs from all experiments
 - Linux group quota guarantee the fairness among experiments
 - Surplus scheduling policy to promote the job slots utilization
 - HTCondor provides fairness policy among the same experiment users
- High job slots utilization → ~95%

Slurm Cluster

Resources

- 1 master node, 1 accounting & monitoring node
- 16 login nodes
- 141 work nodes: 3,384 CPU cores + 8 GPU cards
- Jobs (2018.04~2018.09)
 - Jobs number : ~14K
 - CPU hours : ~4.2 million
- GPU servers procurement
 - 80 GPU cards : NVIDIA Tesla V100 nvlink 32GB
 - 1 PFLOPs (single precision)
 - INSPUR won the bid

Quantity of Jobs

CPU * Hours of Jobs

Distributed Computing

- Distributed Infrastructure with Remote Agent Control (DIRAC)
 - A general purpose open source distributed computing framework
- Pilot based Workload Management provides abstraction of Computing Resources
 - Allows to combine heterogeneous resources in a transparent way
- IHEP distributed computing built on DIRAC implemented integration of computing resources among collaborations
 - About 14 sites from USA, Italy, Russia, China universities
 - About 3,500 CPU cores and 500 TB disk storage have been integrated
 - Support Grid, Cluster, Cloud and Volunteer computing

Computing Service for LHAASO

- A new remote site for LHAASO, located in Dao Cheng (at the altitude of 4,410m), Sichuan Province, China
- Cloud-based service to reduce the operation and maintenance cost
 - Login and administration nodes are managed by openstack + kubernetes
 - Jobs are scheduled by HTCondor

Lustre Storage

- Lustre has been adapted for 10 years with rich experiences
- Currently 10 Lustre instances, totally 11 PB
- Throughput
 - Read: 15 GB/s Peak, 10 GB/s Average
 - Write:1.1 GB/s Peak, 0.2 GB/s Average

- New robust architecture without single failure point
- Evaluation of new features in Lustre 2.11+
 - File Replication, Data on MDT, Progressive File Layout ...

New Storage at IHEP

- EOS
 - EB-level storage software developed by CERN
 - To be the future solution for HEP storage
- Deployed at IHEP in 2016
 - 2 instances for physics data storage
 - LHAASO: 2.3PB
 - HXMT: 330TB
 - 1 instance for users' own data (IHEPBox based on owncloud)

Read peak: 4.5GB/s
Peak values allowed by the environment (mainly 5 FST each has 10Gb Ethernet)

Data Transfer

Deployment & Monitor

- Software automatic deployment
 - Quattor → Puppet: More flexible and better scalability
 - More than 2,000 machines: OS installation & software upgrade automatically

- NMS: 20,000+ service metrics from all machines are under real time monitoring
- Mini-error: fixed automatically
- Serious-error: warning
 - Message, email, wechat

Service Status Totals k Warning Unknown Critical Pending

19285 22 35 16 3999 307 4 O 630 0 n 184 0 0 N 0

New Monitoring System - ELK

Outline

- **Introduction to IHEP-CC**
- (2) Computing, Storage and Network Resources
- Architecture and Services
- **Beijing LCG Tier 2 Site**
- Summary

BEIJING LCG Site

CPU: 888 cores

Intel E2680V3: 696 Cores

Intel X5650 192 Cores

Batch: Torque

DPM: 400TB

4TB * 24slots with Raid 6, 5 Array boxes

dCache: 540TB

4TB * 24slots with Raid 6, 8 Array boxes

• 3TB * 24slots with Raid 6, 1 Array box

The Site keeps a good reliability at most of the time

The Plan of Grid Tier-2 in 2019

- 1080CPU cores
- 360TB

Resources replacement

- CPU: Intel Golden 6140, 3456 cores
- HEPSPEC06: 60,000
- Storage: 2,800TB (dCache + DPM)000
- ATLAS:CMS:LHCb ~1:1:1

CE: HTcondor-CE

DISK(TBytes)

Summary

- IHEP site has been providing computing service to HEP experiments
- IHEP site scale will be expanded
- Trying to keep up with the new technology trends
- Challenge are always in front of us

Thank you! Question?