

Measuring the the Branching Ratios of semileptonic Kaon decays and their Form Factors

Nora Patricia Estrada Tristán

Universidad de Guanajuato

Reunión de CSA. Junio 2018

Contents

- Introduccion
 - Proposal
- Form Factors
- Event Selection Criteria
 - Upstream Event Selection Criteria
 - Downstream: Charged Particle Selection Criteria
 - \bullet π^0 Selection Criteria
- Control Sample $K^+ \to \pi^+ \pi^0$
 - \bullet $K^+ \rightarrow e^+ \pi^0 \nu_e$
 - \bullet K⁺ $\rightarrow \mu^+ \pi^0 \nu_\mu$
- Aproximation to Montecarlo
 - Montecarlo: K2p
 - Montecarlo: Ke3
 - Montecarlo: Km3
- Q^2 studies
 - Q_{Ke3}^2
 - Q_{Km3}^2
- Summary
 - AOB

Proposal

In addition to measure the Branching Ratios of the semileptonic Kaon decays ($K_{(3)}$) compare also their Form Factors

Leptonic channels

Non radiative

•
$$K^+ \to \pi^0 e^+ \nu \ (K_{e3})$$

•
$$K^+ \to \pi^0 \mu^+ \nu \ (K_{\mu 3})$$

Radiative

•
$$K^+ \rightarrow \pi^0 e^+ \nu \gamma (K_{e3\gamma})$$

$$\bullet \ \ K^+ \to \pi^0 \mu^+ \nu \gamma \ (K_{\mu 3 \gamma})$$

Control sample

•
$$K_{\pi 2}: K^+ \to \pi^+ \pi^0$$

Measured Branching Ratios of non radiative modes

•
$$K^+ \to \pi^0 e^+ \nu \ (K_{e3})$$

5.07 ± 0.04%

•
$$K^+ \to \pi^0 \mu^+ \nu (K_{\mu 3})$$

3.352 ± 0.033%

Measured Branching Ratios of radiative modes

•
$$K^+ \to \pi^0 e^+ \nu \gamma \ (K_{e3\gamma})$$

2.56 ± 0.16%

•
$$K^+ \to \pi^0 \mu^+ \nu \gamma \ (K_{\mu 3 \gamma})$$

1.25 ± 0.25%

Differential K_{I3} decay width depending on the lepton and pion energies E_I and E_{π} is given by the Dalitz plot density:

$$\frac{d^2\Gamma(K_{l3})}{dE_l dE_{\pi}} = \rho(E_l, E_{\pi}) = N(A_1|f_+(t)|^2 + A_2 f_+(t) f_-(t) + A_3 |f_-(t)|^2)$$

 $t=Q^2=(P_K-P_\pi)$: 4-momentum transfer to the leptonic system

N: numerical factor

$$f_{-}(t) = (f_0(t) - f_{+}(t))(m_K^2 - m_{\pi^0}^2)/t$$

 $f_{+}(t)$ and $f_{0}(t)$: vector and scalar form factors

mk: kaon mass

 $m_{\pi 0}$: neutral pion mass

The kinematic factors are:

$$A_1 = m_K (2E_l E_{\nu} - m_K (E_{m}^{max} - E_{\pi})) + m_l^2 ((E_{\pi}^{max} - E_{\pi})/4 - E_{\nu})$$

$$A_2 = m_l^2 (E_{\nu} - (E_{m}^{max} - E_{\pi})/2)$$

$$A_3 = m_l^2 (E_{m}^{max} - E_{\pi})/4$$

Where:
$$E_{\pi}^{max} = (m_K^2 + m_{\pi^0}^2 - m_I^2)/2m_K$$

 $E_{\nu} = m_K - E_I - E_{\pi}$

Event Selection Criteria

Upstream Event Selection Criteria

- Positively identified in KTAG
- Track in 3 GTK station, the closest in time with RICH
- Kaon decay vertex in the fiducial volume

$$110m < Z_{vertex} < 180m$$

Momentum as measured with GTK

Minimun Time_{rich} - Time_{GTK}

General criteria

- Only one charged track downstream with charge = +1
- Hits in 4 STRAW chambers
- In the geometrical acceptance of CHOD, LKr, and MUV3
- All signals in time (<1.5 ns)

- For the e⁺
 - RICH likelihood most probable for e^+
 - No MUV3 association
- For the μ^+
 - RICH likelihood most probable for μ^+
 - MUV3 positive association
- For the π^+
 - RICH likelihood most probable for π^+
 - No MUV3 association

Cut in E/P in LKr was removed due to assymetric efficiency for three cases

π^0 Selection Criteria

Only from LKr Clusters

- Two clusters in time in LKr
 - Far from the charged track projection
 - Far from dead cells
- ullet |Recon mass $m_{\pi^0}| < 15 MeV/c$

Gamma - gamma reconstructed mass

Control Sample $K^+ o \pi^+ \pi^0$

Reconstructed mass from $\pi^+\pi^0$

Reconstructed mass for $\pi^+\pi^0$ compared to Pt

Pt distribution is contaminated with unknown background, correlation between Pt and m_{miss}^2 cuts is under study.

Reconstructed mass from $e^+\pi^0$

Reconstructed mass for $e^+\pi^0$ compared to Pt

Reconstructed mass from $\mu^+\pi^0$

Reconstructed mass for $\mu^+\pi^0$ compared to Pt

Montecarlo: K2p

$K^+ \rightarrow \pi^+ \pi^0$ 40 M events simulated

Invariant mass with different hypotesis

Missing mass with different hypotesis

Montecarlo: Ke3

$K^+ \rightarrow e^+ \pi^0 \nu$ 20 M events simulated

Invariant mass with different hypotesis

Missing mass with different hypotesis

Montecarlo: Km3

$K^+ \rightarrow \mu^+ \pi^0 \nu$ 14 M events simulated

Invariant mass with different hypotesis

Reconstructed mass for $\pi^+\pi^0$

Reconstructed mass for $e^+\pi^0$ Reconstructed mass for $\mu^+\pi^0$

Missing mass with different hypotesis

$$m_{miss}^2 = (P_K - P_{\pi^+} + P_{\pi^0})^2$$
 $m_{miss}^2 = (P_K - P_{e^+} + P_{\pi^0})^2$ $m_{miss}^2 = (P_K - P_{\mu^+} + P_{\pi^0})^2$

Q^2 studies

 Q^2 with reconstructed data

True Q^2 extracted from MC

(miss-id)

 Q^2 with reconstructed data

True Q^2 extracted from MC

(miss-id)

Summary

Summary

- First perspective for studing semileptonic Form Factors.
- Selection criteria is being refined
- Background is being defined
- MC strategy is being developed for background and systematic studies
- First studies in Q2 are presented

Results shown with $\sim 0.2\%$ of total data

Ongoing...

- Normalize all MC samples to fine-tune background studies
- Understand why Q^2 distributions are different (this can take a while)
 - background contamination
 - systematics
- Find sources of backgrund (this can also take a while)

Long term...

- Evaluation of trigger efficiency
- Evaluation of experimental acceptance
- Evaluation of cut efficiency

Other ongoing task

- Along the 2018 run
 - Doing shifts (a lot!!)
 - Expert of some subsystems (OM, LKr)
 - Shifts management
 - RICH efficiency checking
- Beca de Movilidad -> Thank you for all your help!!
- FPCP 2018 (India) -> HNL with NA62 2015 data.