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Homework (with solutions)

Homework 1. Which of the following observables are IRC safe (assuming the jet has been selected
in an IRC safe fashion)? The jet invariant mass, the invariant mass of tracks in a jet, generalised
angularities.
Solution. The caveat has to do with the fact that, if we want to measure an internal property of a jet
(e.g. its mass) we must make sure that the jet selection is not ambiguous in perturbation theory. For
instance, the mass of the hardest jet is ambiguous because LO-type configurations are back-to-back.
Instead the mass of the hardest jet in Z+jet events, is fine.

• The jet invariant mass is IRC safe. Let us consider a collection of massless particles in a jet

m2 = (p1 + p2 + . . . pi + pi+1 . . . )
2 (1)

If pi is soft, its contribution to the mass vanishes. If pi and pi+1 go collinear, we only have to
prove that if pi,i+1 = pi + pj then p2i,i+1 → 0. This is easy to show because

p2i,i+1 = (pi + pj)
2 = 2pi · pj = 2E1E2(1− cos θ12). (2)

• Track observables are measured on electrically charged particles (the ones that leave a signature in
the tracking system). Thus, when performing a calculation we have to impose different restrictions
on real-emission and virtual diagrams, leading to a mis-cancellation of IR singularities and hence
IRC unsafety.

• Let us define zi = pTi
pT

, then

λκ,β =
∑
i∈jet

zκi θ
β
i , (3)

where θi is measured with respect to the jet axis. The condition κ > 0 ensures that soft emissions,
i.e. the ones with zi → 0 give vanishing contributions to the observable. Collinear safety is more
subtle because the condition β > 0 is not sufficient. Let us consider the case where emissions i
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and j become collinear. This means that θij → 0, i.e. θi ' θj . The generalised angularity then
becomes

λκ,β = zκ1 θ
β
1 + . . . zκi θ

β
i + zκj θ

β
j + . . . zκnθ

β
n = zκ1 θ

β
1 + . . .

(
zκi + zκj

)
θβi + . . . zκnθ

β
n (4)

Thus, only if κ = 1 we can write

λκ,β = z1θ
β
1 + . . . (zi + zj) θ

β
i + . . . znθ

β
n, (5)

which implies collinear safety. We conclude that generalised angularities are safe for κ = 1 and
β > 0.

Homework 2. Show that for an event made up of two particles all gen. kt algorithms recombine
them is their azimuth-rapidity distance is less than R.
Solution. Let us consider a jet made up for two particles with momenta p1 and p2. Then the generalised
kt distance is

d12 = min(ppT1, p
p
T2)

∆R12

R
d1 = ppT1, d2 = ppT2. (6)

The two particles are recombined if their mutual distance d12 is the minimum distance, i.e. d12 < d1 and
d12 < d2. For Cambridge/Aachen (p = 0), this immediately implies ∆R12 < R. For the kt algorithm
(p > 0) we have to consider two cases.

a) If pT1 > pT2 then, 1 and 2 are recombined if

d12 = ppT2
∆R12

R
< ppT1

d12 = ppT2
∆R12

R
< ppT2 (7)

and the second inequality implies ∆R12 < R.

b) Analogously, when pT2 > pT1 particles 1 and 2 are recombined if

d12 = ppT1
∆R12

R
< ppT1

d12 = ppT1
∆R12

R
< ppT2 (8)

from which again we have ∆R12 < R.

Finally, the proof for anti-kt (when p < 0) proceeds in the same was as for kt but with cases a) and b)
swapped.

Homework 3. Consider the emission of a soft gluon with momentum k off a fermion line of
momentum p mass m and derive the corresponding eikonal factor.
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Solution. Using standard notation for the QCD Feynman rules, we have

M =Mr

i(/p− /k +m)

(p− k)2 −m2 + iε

(
−igstaijγµ

)
u(p)ε∗µ(k)

=Mr

i[γµ(−/p+ /k +m) + 2(pµ − kµ)]

−2p · k + iε

(
−igstaij

)
u(p)ε∗µ(k)

=Mr
i[γµ/k + 2(pµ − kµ)]

−2p · k + iε

(
−igstaij

)
u(p)ε∗µ(k), (9)

where in the last step we have used the Dirac equation /pu(p) = mu(p). We now take the soft limit
kµ � pµ and obtain

M =Mru(p)
pµ

−p · k + iε
gst

a
ijε
∗
µ(k), (10)

Homework 4. The bulk of the O(R2) contribution to the jet mass spectrum arises from the initial-
state radiation . Calculate the contribution to the jet mass from the dipole which is formed by the
initial-state partons [hint: it’s easier to work with rapidity and azimuth].
Solution. Following the hint, we describe the kinematics with

p1 =

√
s

2
x1 (1, 0, 0, 1) , p2 =

√
s

2
x2 (1, 0, 0,−1) ,

p3 = pt (cosh y, 1, 0, sinh y) , k = kt (cosh η, cosφ, sinφ, sinh η) , (11)

where p1 and p2 denote the four-momenta of the incoming hard partons, p3 the momentum of the jet,
and k of the soft gluon. It is understood that the jet must recoil against a system with momentum p4
(not specified above), over which we are inclusive.

Provided the soft gluon is clustered with the jet, its contribution to the jet mass is

m2 = (p3 + k)2 = 2p3 · k = 2ptkt (cosh(η − y)− cosφ) . (12)

We can now add together real and virtual pieces and write the contribution to the cumulative distri-
bution from the 12 as

αsΣ
(1)
12 = −C12

∫
ktdktdη

dφ

2π

αs (κ12)

2π

(p1.p2)

(p1.k)(p2.k)
Θ
(
(η − y)2 + φ2 < R2

)
·Θ
(

2kt
ptR2

(cosh(η − y)− cosφ) > ρ

)
, (13)

where the first Θ function is the jet clustering condition and we have introduced ρ = m2

p2tR
2 . We next

note that

κ212 = 2
(p1.k)(p2.k)

(p1.p2)
= k2t . (14)

Eq. (13) therefore exhibits a logarithmic enhancement at small kt as expected. To isolate the leading
(NLL) contribution, we can as usual just retain the dependence of the jet mass on kt in the second line
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of (13), and neglect the dependence on y, η and φ which produces terms beyond NLL accuracy. We
can then carry out the integration over η and φ which simply measures the jet area πR2 and obtain

αsΣ
(1)
12 = −C12R

2

∫ pt

ρpt

αs(kt)

2π

dkt
kt
, (15)

where the lower limit of integration stems from the constraint on the jet mass.
Homework 5. The QCD splitting g → bb̄ is an important background for H → bb̄. What’s the

average mass of the QCD splitting ? (Assume mb = 0).

Solution. If we assume the b-quark to be massless, then the collinear branching g → bb̄ is described
by the splitting function

Pqg(z) = TR
[
z2 + (1− z)2

]
. (16)

Thus, following what was done in the lecture,

〈m2〉 =
αsTR

2π
p2T

∫ R2

0

dθ2

θ2

∫ 1

0
dz
[
z2 + (1− z)2

]
z (1− z) θ2

=
αsTR

2π
p2TR

2

∫ 1

0
dz
[
z2 + (1− z)2

]
z (1− z) =

1

20

αsTR
π

p2TR
2. (17)

Homework 6.1. Compute the jet mass distribution at O(αs) for a jet tagged by mMDT. You can
work, as in the lecture, in the collinear limit, neglecting power corrections in the jet radius. You can
also work in the limit of small zcut. What is the role of the mass-drop parameter µ at this order?

Solution.
In a leading-order configuration the jet consists of just two partons. When the jet is declustered,

each of the prongs is massless, so that the mass-drop condition is automatically satisfied, rendering the
µ parameter irrelevant. There are then two possibilities: if the asymmetry condition is satisfied the jet
is tagged, with the tagged mass equal to the original jet mass. Otherwise the jet does not contribute
to the tagged jet mass distribution. We may write the differential cross section for the jet to have a
given tagged mass as

1

σ

dσ

dm2

(mMDT, LO)

=
αs
2π

∫
dzPgq(z)

dθ2

θ2
δ
(
m2 − z(1− z)p2T θ2

)
×

×Θ (z − zcut) Θ (1− z − zcut) Θ
(
R2 − θ2

)
. (18)

Proceeding as the previous LO calculations, we obtain

ρ

σ

dσ

dρ

(mMDT, LO)

=
αsCF
π

[
Θ(ρ− zcut) ln

1

ρ
+ Θ(zcut − ρ) ln

1

zcut
− 3

4
+O(ρ, zcut)

]
. (19)
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The result is characterised by two regimes: it is linear in ln 1
ρ when ρ > zcut (i.e. “double” logs), and

saturates at a constant value (ln 1
zcut
− 3

4) for ρ < zcut (i.e. “single” logs).

Homework 6.2. Compute the pruned mass distribution at O(αs). You can work, as in the lecture,
in the collinear limit, neglecting power corrections in the jet radius. You can also work in the limit of
small zcut. How does the result compare to mMDT at this order?
Solution.

At leading order, i.e. a jet involving a single 1 → 2 splitting, Rprune = m
pT

= dij
√
z(1− z), which

guarantees that dij > Rprune. To establish the pruned jet mass, one then needs to examine the second
part of the pruning condition: if min(z, 1 − z) > zcut then the clustering is accepted and the pruned
jet has a finite mass. Otherwise the pruned jet mass is zero. This pattern is true independently of the
angle between the two prongs. This leads to the following result for the mass distribution:

1

σ

dσ

dm2

(prune, LO)

=
αs
2π

∫
dz Pgq(z)

dθ2

θ2
δ
(
m2 − z(1− z)p2T θ2

)
× (20)

×Θ (z − zcut) Θ ((1− z)− zcut) Θ
(
R2 − θ2

)
,

=
αs
2π

∫
dz Pgq(z)

1

m2
Θ (z − zcut) Θ

(
z − m2

p2TR
2

)
, (21)

where to obtain the last line we have made use of the fact that zcut is small and that the integral is
dominated by the region z � 1. The final z-integration is straightforward to perform and gives

ρ

σ

dσ

dρ

(prune, LO)

=
αsCF
π

[
Θ(ρ− zcut) ln

1

ρ
+ Θ(zcut − ρ) ln

1

zcut
− 3

4
+O(ρ, zcut)

]
. (22)

This result is identical to what we found for mMDT, i.e. a rise linear in ln ρ for ρ down to zcut, and
then it is constant below. However, this similarity only holds at leading order. Beyond that, the pruned
mass distribution develops a more complicated structure.

Homework 7. Compute the LL (fixed-coupling) expression for the Iterated Soft Drop ν for β < 0 and
for β > 0, with an additional cutoff on the angular separation θmin. Show that the ISD multiplicity
exhibits the same scaling as the track multiplicity (while being IRC safe).
Solution.

ν =
αsCi
π

∫ 1

0

dθ2

θ2

∫ 1

0

dz

z
Θ(z > zcutθ

β) =
αsCi
π

∫ 1

0

dθ2

θ2

[
log

1

zcut
+ β log

1

θ

]
Θ(zcutθ

β < 1). (23)

If β < 0, the above expression is finite and we have

ν =
2αsCi
π

∫ 1

z

1
|β|
cut

dθ

θ

[
log

1

zcut
− |β| log

1

θ

]
=
αsCi
π|β|

[
log2

1

zcut

]
. (24)

If instead β > 0, we have to introduce an angular cut-off:

ν =
2αsCi
π

∫ 1

θcut

dθ

θ

[
log

1

zcut
+ β log

1

θ

]
=

2αsCi
π

[
log

1

zcut
log

1

θcut
+
β

2
log2

1

θcut

]
. (25)

5



Given that the ISD multiplicity is Poisson-distributed, its mean value is given by ν. Hence at LL, we
have

〈nISD〉g
〈nISD〉q

=
νg
νq

=
CA
CF

, (26)

which is the same relation we have found for the track multiplicities.
Homework 8. Consider the momentum fraction zg between the two prongs that pass soft drop. Com-
pute the Sudakov-safe integral for β > 0and show that you obtain a non-analytic expansion in the
square-root of αs. Repeat the exercise for the IRC safe case β < 0 and show that its expansion is now
analytic in αs and it reproduce the first-order result discussed during the lecture.).

Solution. Following the definition of Sudakov safety discussed in the lecture, we have to evaluate

1

σ0

dσ

dzg
= Pi(zg)

αsCi
π

∫ 1

0

dθg
θg

exp

[
− αsCi

πβ

(
log2(zcutθ

β
g )− log2(zcut)

)]
Θ(zcutθ

β
g < zg), (27)

where the exponential is the Sudakov form factor for the companion variable θg, evaluated at leading-
logarithmic accuracy, in the fixed-coupling approximation.

We first consider β > 0, the evaluation of Eq. (27) gives

1

σ0

dσ

dzg
≈
√

αs
4βCi

e
αsCi
πβ

log2(zcut)
[
1− erf

(√
αsCi
πβ

log

(
1

min(zg, zcut)

))]
Pi(zg). (28)

Although at first sight this looks similar to what was previously obtained, Eq. (28) (for positive β)
shows a significantly different behaviour compared to Eq. (30) for negative β, as a direct consequence
of the fact that zg is only Sudakov safe for β > 0. Indeed, for β > 0, the distribution has the expansion

β > 0 :
1

σ0

dσ

dzg
=

√
αs

4βCi
Pi(zg) +O (αs) , (29)

and the presence of
√
αs implies non-analytic dependence on αs.

Let us consider the case β < 0 for which zg > zcut and we get

1

σ0

dσ

dzg
≈
√

αs
4|β|Ci

e
−αsCi
π|β| log2(zcut) (30)[

erfi

(√
αsCi
π|β|

log

(
1

zcut

))
− erfi

(√
αsCi
π|β|

log

(
1

zg

))]
Pi(zg),

where erfi(x) = −i erf(ix) is the imaginary error function. For β < 0, zg is an IRC-safe observable and,
accordingly, the above result admits an expansion in powers of the strong coupling:

β < 0 :
1

σ0

dσ

dzg
=

αs
π|β|

Pi(zg) log
( zg
zcut

)
Θ(zg − zcut) +O(α2

s). (31)
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