Jets and their structure Simone Marzani Università di Genova & **INFN Sezione di Genova** INF QCP Masterclass

2019

Lecture plan

* lecture 1: jets and jet algorithms

- * lecture 2: calculating jet properties
- * lecture 3: jet substructure
- * lecture 4: more advanced topics & curiosities

Lecture 3: jet substructure

- * boosted-objects physics
- * grooming and tagging
- calculations for jet substructure

the (ambitious) target of this lecture is to understand this plot

searching for new particles (I)

 Standard analysis: the heavy particle X decays into two partons, reconstructed as two jets

- Look for bumps in the dijet invariant mass distribution
- * What about EW-scale particles at the LHC?

searching for new particles (II)

* LHC energy (10⁴ GeV) \gg electro-weak scale (10² GeV) * EW-scale particles (new physics, Z/W/H/top) are abundantly produced with a large boost

 their decay-products are then collimated
 if they decay into hadrons, we end up with localised deposition of energy in the hadronic calorimeter: a jet

Event: 531676916 2015-08-22 04:20:10 CEST

we want to look inside a jet

Event: 531676916 2015-08-22 04:27

CEST

we want to look inside a jet

Event: 531676916 2015-08-22 04:27 exploit jets' properties to distinguish signal jets from bkgd jets

R

 \boldsymbol{q}

R

00000000000

 $p_t > 2m/R$

we want to look inside a jet

signal-jet mass

first jet-observable that comes to mind

* signal jets should have a mass distribution peaked near the resonance

signal-jet mass

- first jet-observable that comes to mind
- * signal jets should have a mass distribution p the resonance
- * however, that's a simple partonic picture
- * perturbative and non-pert. emissions from the qqb pair broadens and shift the peak
- * underlying event and pile-up typically enhance the jet mass

boosted X

single

fat jet

QCD-jet mass

- * first jet-observable that comes to mind
- * background (QCD) jets acquire mass through showering

 $m^2 = 2p_q \cdot p_g \simeq z(1-z)\theta^2 p_T^2$

QCD-jet mass

- * first jet-observable that comes to mind
- * background (QCD) jets acquire mass through showering

QCD-jet mass

- * first jet-observable that comes to mind
- * background (QCD) jets acquire mass through showering

 $m^{2} = 2p_{q} \cdot p_{g} \simeq z(1-z)\theta^{2}p_{T}^{2}$ $\langle m^{2} \rangle \simeq \frac{\alpha_{s}}{2\pi}p_{T}^{2} \int_{0}^{R^{2}} \frac{d\theta^{2}}{\theta^{2}} \int_{0}^{1} dz z(1-z)\theta^{2}P_{gq}(z)$ $= \frac{\alpha_s C_F}{\pi} p_T^2 R^2 \int_{-\infty}^{10} dz z(1-z) \frac{2-2z+z^2}{2z}$ mass grows with pr

homework 5

* Gluon splitting into bottom quarks $g \rightarrow bb$ is important for $H \rightarrow bb$ studies. What's its average mass? (take $m_b=0$)

QCD-jet mass: NP effects

* first jet-observable that comes to mind

* background (QCD) jets receive important non-pert contributions

pile-up (data!)

Ldt = 4.7 fb⁻¹, \sqrt{s} = 7 TeV

(2013) 076

200

250

300

hadronisation and UE

- * need to go beyond the mass and exploit jet substructure : grooming and tagging:
 - * clean the jets up by removing soft radiation
 - identify the features of hard decays and cut on them

- * need to go beyond the mass and exploit jet substructure : grooming and tagging:
 - * clean the jets up by removing soft radiation
 - * identify the features of hard decays and cut on them

- * need to go beyond the mass and exploit jet substructure : grooming and tagging:
 - * clean the jets up by removing soft radiation
 - * identify the features of hard decays and cut on them

core-idea for grooming:

* identify the "right"
angular scale

- * need to go beyond the mass and exploit jet substructure : grooming and tagging:
 - * clean the jets up by removing soft radiation
 - * identify the features of hard decays and cut on them

core-idea for grooming:

- identify the "right"
 angular scale
- throw away what is soft
 & large angle
- * left with a groomed jet

- * need to go beyond the mass and exploit jet substructure : grooming and tagging:
 - * clean the jets up by removing soft radiation
 - * identify the features of hard decays and cut on them
 - core-idea for 2-body tagging:

- * need to go beyond the mass and exploit jet substructure : grooming and tagging:
 - * clean the jets up by removing soft radiation
 - * identify the features of hard decays and cut on them

core-idea for 2-body tagging: $\min(z, 1-z) > z_{cut}$

 $P_{h \to q\bar{q}} = 1$ symmetric sharing of the energy

asymmetric sharing of the energy

BDRS method for $H \rightarrow bb$

undo last stage of C/A clustering.
if there's symmetric sharing of energy
significant mass drop, then tag the jet.
otherwise iterate

resolve the jet

 on a smaller radius
 keep the 3 hardest
 subjets

this study resurrected an "impossible" channel
still very difficult at the LHC !
it sparked interest in this field !

Butterworth, Davison, Rubin and Salam (2008)

grooming & tagging landscape

relative positions depends on physics tagging context, kinematics, etc.

plot by G. Salam

recap: the jet mass

* all-order leading logs: veto emissions which would give too big a mass

* exponential that gives the no-emission probability

* jet mass distributions exhibits double logs

recap: the jet mass

σres = 90 exp[g1(αsL)/ αs+g2(αsL)+αs g3(αsL)+...]

* all-order leading logs: veto emissions which would give too big a mass

* exponential that gives the no-emission probability

* jet mass distributions exhibits double logs

and now groomed masses

σres = 90 exp[91(αsL)/ αs+92(αsL)+αs 93(αsL)+...]

* different groomers / taggers appear to behave quite similarly

and now groomed masses

σres = 90 exp[91(αsL)/ αs+92(αsL)+αs 93(αsL)+...]

but only for a limited kinematic region!
complicated algorithm with many parameters
can we compute groomed mass distributions?

trimming as an example

Krohn, Thaler and Wang (2010)

1. take all particles in a jet and re-cluster them with a smaller jet radius R_{sub} < R

- 2. keep all subjets for which pt^{subjet} > Zcut Pt
- 3. recombine the subjets to form the trimmed jet

Before

After

trimming

 the action of a groomer is to remove some of the allowed phase space (typically soft and soft-collinear)
 what are the consequences for physical observables, e.g. the jet mass ?

trimmed mass at LL

trimmed mass at LL

trimmed mass at LL

$$\Sigma^{(\text{trim})}(\rho) \simeq \exp\left[-\frac{\alpha_s C_F}{2\pi} \left(-\frac{3}{2}\ln\frac{1}{\rho} + \Theta(\rho - z_{\text{cut}})\ln^2\frac{1}{\rho} + \Theta(z_{\text{cut}} - \rho)\left(\ln^2\frac{1}{z_{\text{cut}}} + 2\ln\frac{z_{\text{cut}}}{\rho}\ln\frac{1}{z_{\text{cut}}}\right) + \Theta(z_{\text{cut}}r^2 - \rho)\ln^2\frac{z_{\text{cut}}r^2}{\rho}\right]\right]$$

trimmed mass: MC vs analytics

Modified LL (MLL): LL + hard collinear + running coupling

trimming is active (and aggressive) for z_{cut} sub</sub>²/R² z_{cut}
 not active below because of fixed R_{sub}

pruned mass: MC vs analytics

Ellis, Vermilion, Walsh (2010)

Modified LL (MLL): LL + hard collinear + running coupling

more complex structure, no simple exponentiation
 single logs for z_{cut}²cut</sub>

mMDT mass: MC vs analytics

Pasgupta, Fregoso, SM, Salam (2013)

Modified LL (MLL): LL + hard collinear + running coupling

MDT has only single logs at LO
 modified MDT maintains this feature to all orders

homework 6

Show that the leading-order mass distributions for MDT and pruning are single-logarithmic. (This doesn't hold at higher orders!). Use the definition below

1. Undo the last stage of the C/A clustering. Label the two subjets j_1 and j_2 ($m_1 > m_2$) 2. If $m_1 < \mu m$ (mass drop) and the splitting was not too asymmetric, ie

$$\frac{\min(p_{ti}, p_{tj})}{p_{ti} + p_{tj}} > z_{\text{cut}}$$

tag the jet. 3. Otherwise redefine $j = j_1$ and iterate. 1. From an initial jet with mass m define the pruning radius $R_{prune} = m / p_t$ 2. Re-cluster the jet, vetoing recombination for which: dij > R_{prune} and $\frac{\min(p_{ti}, p_{tj})}{p_{ti} + p_{tj}} > z_{cut}$

[Hint] Consider as in the lecture the emission of a collinear gluon off a quark. Take the small-z_{cut} limit to simplify your expressions.

analytics to check MCs

so far we have always compared to a single MC simulation
 how solid are MC descriptions ?

take the spread as the uncertainty ?
 but we can also add the analytic calculation

analytics to check MCs

so far we have always compared to a single MC simulation
 how solid are MC descriptions ?

* take the spread as the uncertainty ?
 * but we can also add the analytic calculation

 problem in the shower: fixed by the Authors in the 6.428 pre version

analytic understanding at work: soft drop Larkoski, SM, Soyez and Thaler (2014)

1. Undo the last stage of the C/A clustering. Label the two subjets j1 and j2.

If
$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

2.

then deem j to be the soft-drop jet.

3. Otherwise redefine j to be the harder subjet and iterate.

1-prong jets can be either kept (grooming mode) or discarded (tagging mode)

- generalisation of the (modified) Mass Drop procedure
 no mass drop condition (not so important)
- * mMDT recovered for β=0
 * some inspiration from semi-classical jets

Butterworth, Pavison, Rubin and Salam (2008) Dasgupta, Fregoso, SM and Salam (2013)

Tseng and Evans (2013)

soft drop as a groomer

soft drop vs trimming

* trimming had an abrupt change of behaviour due to fixed R_{sub} * in soft-drop angular resolution controlled by the exponent b * phase-space appears smoother

Soft drop in grooming mode (β >0) works as a dynamical trimmer

soft drop and mMDT

soft drop as a tagger

soft-drop mass at LL

soft-drop mass at LL

soft-drop mass: MC vs analytics

precision jet substructure

Results: NNLL+ α_s^2 Jet Substructure

performance & resilience

more robust

summary of lecture 3

* precision substructure physics with soft-drop

more robust

summary of lecture 3

more efficient

more robust