
1

PREEMPTIBLE INSTANCES

17/05/2018

THEODOROS TSIOUTSIAS
theodoros.tsioutsias@cern.ch

mailto:theodoros.tsioutsias@cern.ch


2

● Introduction
● Scenarios
● The problem
● The solution
● Openstack Preemptible Instances
● Reaper Implementation

Outline



3

Introduction
Quotas

● Quota System:

● Operators use quotas per project to:

1. Prevent system capabilities from being exhausted without notification
2. Manage the resource allocations
3. Avoid “Over-committing” resources
4. Reserving Resources for operations with higher priority

1. Sets limits on resources
2. Ensures everyone makes use of their fair share of the resources

Cloud Computing gives the illusion of infinite capacity



4

Micro view

Scenario 1/3

● Alice has available resources
● Bob’s quota is exhausted and he needs more computing power

Bob could tell Alice: “Please let me use the your idle resources.”

Bob Alice



5

But what happens in a department? 
Scenario 2/3

● Imagine a now department in a company with tens of employees having the same issue



6

Or even worse, in a big organization?

Scenario 3/3

● The same race exists between different departments in an organization



7

Problem

● As the organization grows, the amount of unused/idle resources may increase as well.

● Quotas are hard limits:

● This leads to a reduction in cloud utilization:

Even if there are free resources, they cannot be allocated to a project whose quota is exceeded

There are resources in idle state!

Keeping track of the available resources



8

Solution

● Introducing the concept of Preemptible Instances:
○ created even after the quota for a project is exceeded
○ use idle resources
○ terminated as soon as the resources are needed for higher priority tasks

● The result of this:
○ handling the demand for extra resources
○ increasing the cloud utilization
○ maintaining the fair sharing of the infrastructure



9

Openstack Preemptible Instances

● Use dedicated projects:
○ These projects have unlimited quota
○ Instances in these projects are preemptible

● Introduce a Reaper service:
○ Orchestrator for the preemptible instances
○ Applies strategies to free up the resources

Starting things simple



10

Modes of operation

● Watermark: 
○ The operator defines a margin (e.g. 95% max usage)
○ Periodically checks if we respect the watermark

● Build failure due to lack of resources:
○ Introduce the PENDING instance state
○ Instances that fail for this reason, go to PENDING instead of ERROR
○ The service is notified and it tries to free the requested resources
○ Depending on the outcome:

■ Rebuild to consume the resources that are freed up
■ Reset instance state to ERROR

Reaper Implementation 1/3



11

Reaper Implementation 2/3



12

Proposed changes to Nova

● (spec) Add PENDING instance state:
○

● (spec) Enable rebuild for instances in cell0
○

● Add scheduling notification:
○

● Introduce PENDING instance state
○

Reaper Implementation 3/3

https://review.openstack.org/#/c/554212/
https://review.openstack.org/#/c/554218/
https://review.openstack.org/#/c/566470/
https://review.openstack.org/#/c/566473/


13

● By providing Preemptible instances:
○ Maximize cloud utilization
○ Better handling of the increased demand for resources
○ For public clouds: Monetize unreserved resources

● Openstack Preemptible Instances
○ Dedicated projects with unlimited quota
○ Preemptible orchestrator

Summary



14

QUESTIONS?
theodoros.tsioutsias@cern.ch


