
RCDAQ, a lightweight yet powerful data acquisition

system

Martin L. Purschke

March 23, 2019

Contents

1

1 Changelog

1.1 March 13, 2018

• I added a new built-in pseudo device device_rtclock. It allows you ti mea-
sure the event timing, and the distance in time to the most recent event. See
chaper ??

1.2 February 22, 2017

• I added the concept of a named RCDAQ instance. We found that we are
often running multiple RCDAQ systems (such as the main DAQ and the
wirechamber readout at Fermilab). This has sometimes led to confusion
which instance you are interacting with. The name defaults to the host-
name, and can be set with rcdaq_client daq_setname, and retrieved with
rcdaq_client daq_getname. The aliases have also been updated to make the
command shortcuts, and the GUIs show the name now, too.

• The daq_status used to show “logging enabled”, and nothing if disabled. So
the absence of the “enabled” message indicated that we are not logging. That
has led to a number of operator errors. daq_status now shows “enabled” or
“disabled”.

• I have added the start of the web service on the standard port 8899 in the
template setup script “setup.sh”. If this port is taken on your system, you
need to change it.

1.3 August 30, 2016

• Added documentation about the newly implemented web-based controls.

1.4 February 28, 2016

• expanded the chapter ?? with many more details and step-by-step instructions

• added a chapter about the PSI DRS4 evaluation board

1.5 August 27, 2015

• added two new devices device file delete and device filenumbers delete, which
delete the file after it has been read. See page ?? for a description and appli-
cation.

1.6 August 15, 2015

• the rcdaq server process now defines a number of environmental variables,
principally for the benefit of device command. The resulting process, usually

2

a script, can use the variables to obtain important information it might need.
See page ??.

3

2 Introduction

2.1 What This is About

RCDAQ is a data acquisition package which is used in the R&D efforts of the
PHENIX and sPHENIX experiments at the Relativistic Heavy Ion Collider. The
experiment has its main data acquisition which fills a room about size of a squash
court. For a variety of R&D efforts, it was necessary to get a smaller, portable, and
lightweight data acquisition system which would support test beams, electronics
developments, cosmic ray tests, and the like.

Meanwhile, the system is in use for a number of other projects, such as a number
of PET scanners for medical imaging applications, the readout of a GEM detector,
and for tests and the characterization of Silicon Photomultipliers.

The development of RCDAQ was governed by a number of design principles:

format-compatible with the main PHENIX data acquisition system. In
this way, the readout of a new device needs to get implemented and debugged
only once, and is ready to go once the new component is integrated in the main
DAQ system. This also allows to reuse most tools, such as online monitoring
components, during the running of the main experiment.

compatible with the PHENIX online monitoring and analysis frame-
work. This allows to reuse the code developed during the R&D phase and
test beams once the new detector or component is installed in PHENIX. The
online monitoring of several new detectors has its roots in the online monitor-
ing used and refined in a test beam.

lightweight and able to run on most modern Linux distributions. You do
not have to devote your system to the task of running the DAQ. (As a rule of
thumb, if your system has a working version of the root package, you will be
able to install RCDAQ and the assorted components). RCDAQ is also able
to build and run on a Raspberry Pi.

powerful and fast. The most demanding device supported by RCDAQ produces
sustained data rates of 400 MB/s.

client-server based. This will allow you to work in a network-transparent way,
for example, control the main DAQ running on a powerful server natively from
your desktop or laptop.

based on a plugin concept. In order to make the package adaptable to a large
number of tasks, most of the actual readout capabilities and support for the
readout of particular devices is added through plugins. In this way, we are
able to make the core package available outside the PHENIX collaboration
because no proprietary or commercial libraries or drivers (which are needed
for some PHENIX hardware) need to be distributed.

extensive support for automated, scripted acquisitions.

4

no configuration files. By definition, configuration files require you to learn their
syntax. In most cases, configuration file formats, say, XML, do not support
loops, conditions, formal parameters, or error handling, which is why most
systems have moved away from the much-hyped XML format. We already
have the best parser for configuration input – the Unix shell. It fulfills all of
the above requirements (loops, conditions, parameters, and error handling).
Each interaction with RCDAQ is a Unix shell command. In this way, there are
no configuration files, but configuration scripts which you execute to configure
your system.

Elog Support. RCDAQ natively supports the elog electronic logbook, developed
and maintained by Stefan Ritt at the Paul-Scherrer Institute in Switzerland.
RCDAQ can be configured to make automated elog entries to help you keep
track of the data you acquire. You can add to the automatically generated
entries, for example, detailing that the High Voltage tripped during the ac-
quisition, or attach plots or other image files. It gives you an easily accessible
timeline of your data taking efforts.

In the following discussions, you will see the term “Run” a lot. A Run is a collection
of events, say, a certain time interval worth of data, or data taken with a given
settings of some parameters. It is identified by a Run Number that should always
increase during the course of your acquisition. The combination of run number and
event number in that run uniquely identifies an Event that was read out.

2.2 What? No configuration files?

In my opinion, the above-mentioned fact that there are no configuration files, only
scripts, is one of the most versatile features of this DAQ system. Each instruction is
a separate command executed on the shell. Besides the facts that you do not need
to learn a new command interpreter, have loops, conditions, etc, at your fingertips,
the most important feature is that you are not trapped within the always limited
command set of an application. You can freely interleave RCDAQ commands with
other shell commands, and so write a scripted data acquisition protocol tailored to
your needs.

To the best of my knowledge, a group from the Physics Department at Stony Brook
has so far designed the most versatile application of this concept. The task at hand
was to certify a readout plane of a GEM detector. It involved connecting a probe to
a specific pad on the plane, taking some data, and verify that the correct channel
did see the signal, then moving on to the next pad. It was hard to take either the
probe or your eyes off the board without losing the position.

The group came up with a script that would loop through the pads, reading the
pad coordinates and other commands to the operator by way of a text-to-speech
program (festival), so the operator was free to keep the eyes (and the probe) on the
plane at all times. This is possible because you never leave the shell to interact with
RCDAQ.

5

3 Data Format Basics

The PHENIX raw data format defines a number of data structures, most impor-
tantly the concept of Events and Packets.

Think of a Packet as the data from a given readout device, such as an ADC board,
a digitizer, or something similar. Typically, modern readout devices provide their
data in some form of compact data structure, which needs to be unpacked later.
All that RCDAQ does is to store the data unmodified with what we call envelope
information. That envelope information, here the Packet header, holds a packet id
which uniquely identifies what is being read out.

That id is a number chosen by you more or less arbitrarily, as long you keep that
assignment the same. For example, a typical event in PHENIX consists of data from
about 600 different readout devices (which we call FEM, Front-End Module), and
the same number of packets in one event. We chose to assign the ids by “subsystem
number”. The PHENIX Pad Chamber, Subsystem number 4, gets Packet IDs 4001,
4002, and so on. A given Packet id is meant to identify a particular set of channels
on the detector (those connected to the FEM), and it is your responsibility to make
sure that a given id assignment remains the same. It is not uncommon in PHENIX
to refer to a given Front-End Module by its never-changing Packet id (“Last night
we had trouble with Pad Chamber Packets 4036 and 4037, and had to adjust the
supply voltage slightly”).

The Packet id, however, does not specify how the data are stored within the Packet.
That is done by another field, historically called the hitformat, which indicates what
kind of data is kept in that Packet. This is the field that in the end identifies
a decoding algorithm for the data, and which assures that your analysis code is
shielded from changes in the low-level data format of a given FEM or other readout
device.

Over the course of the operation of the PHENIX detector, the low-level data formats
of the FEMs of a given subsystem have changed several times, usually to make the
data more compact by improving the bit-packing of data, or by removing redun-
dancy in the data which was initially needed to test and certify the data integrity.
Packets with data in such a different format are simply tagged with a different hit-
format number, which in turn selects a different decoding algorithm. Your analysis
code is never exposed to those internals. In this way we are free to change the FEM
data formats without ever breaking existing analysis code.

An Event structure is simply a collection/concatenation of such packets, with the
next layer of envelope information, this time the Event header. This header holds
an Event number, event type, a timestamp, length, and similar bookkeeping infor-
mation.

Events and Packets are the only objects you will likely encounter in the course of
analyzing data taken with RCDAQ. The raw data files group a number of Events
in what we call a Buffer, although this is just a storage-technology concept and
mostly invisible to you. I say “mostly” because the design is such that, although
your code is shielded from internals such as buffers and hitformat differences, the
interface libraries still make it easy to access this kind of information for debugging

6

purposes.

The raw data files are lightweight, and have a number of convenient features, most
notably the fact that one can concatenate two valid raw data files and obtain again
a valid file.

All interfaces to the raw data are provided in what we call the Event Library, which
loads in root and teaches root how to deal with our data format. Although it is rare
to write an actual main program, the library also exists without root bindings.

There is a ton of documentation on the PHENIX web pages about the software, to
be found at http://www.phenix.bnl.gov/~phoncs/oncs/code_documentation/

Event/index.html.

You should definitely familiarize yourself with the concepts and read the “Events and
Packets” chapter http://www.phenix.bnl.gov/~phoncs/oncs/code_documentation/
Event/Eventsandpackets.html, and also learn about the indispensable data in-
spection tools such as dlist and ddump in http://www.phenix.bnl.gov/~phoncs/

oncs/code_documentation/Event/dlistddumpanddpipe.html.

4 RCDAQ Principles of Operation

The rcdaq main process is formally a server running in the background. It writes a
very modest amount of output to a log file, but does not accept any kind of input
directly.

All control is performed by clients connecting to the RCDAQ process and instructing
it to perform a particular task, such as loading a plugin, start or stop taking data,
setting parameters, and the like. The underlying protocol is a Remote Procedure
Call (RPC), a network protocol for client-server interaction. It is widely used and
stable because the extremely common Network File system (NFS) is based on the
RPC protocol, and is available on virtually any operating system.

At the core of the readout is the readlist. This is a list of devices registered with
RCDAQ to be read out. When an external trigger arrives (more about this is a
minute), RCDAQ goes through the readlist, and each defined readout device adds
a Packet to the Event structure under construction.

The RPC protocol makes the interaction with RCDAQ network-transparent. Your
client doesn’t need to run on the same machine (of course it can); in fact, it can be
anywhere as long as the RPC protocol is able to traverse the routers and firewalls.

5 Running RCDAQ

Let’s take RCDAQ for a quick spin. RCDAQ knows a built-in “pseudo device”
which pretends to be reading out some kind of ADC or TDC, except that it fills in
some random numbers. I made this “device” in order to allow to test-drive RCDAQ
without the need for any actual acquisition hardware.

7

http://www.phenix.bnl.gov/~phoncs/oncs/code_documentation/Event/index.html
http://www.phenix.bnl.gov/~phoncs/oncs/code_documentation/Event/index.html
http://www.phenix.bnl.gov/~phoncs/oncs/code_documentation/Event/Eventsandpackets.html
http://www.phenix.bnl.gov/~phoncs/oncs/code_documentation/Event/Eventsandpackets.html
http://www.phenix.bnl.gov/~phoncs/oncs/code_documentation/Event/dlistddumpanddpipe.html
http://www.phenix.bnl.gov/~phoncs/oncs/code_documentation/Event/dlistddumpanddpipe.html

+
I provide a guaranteed-to-work setup script “setup.sh” with the RCDAQ
source code. It exercises a number of features that will be presented in the
next chapters. It uses the pseudo devices we will see in a minute. This
script allows you to test the proper working of a RCDAQ installation.

For now, get yourself two terminal windows on the machine that has RCDAQ in-
stalled. We will run the RCDAQ server and clients interactively. Later, you will
likely run the actual server in the background that writes to a logfile.

In terminal 1 (after the one sole command we will leave this alone), type

rcdaq_server

Just to see that we communicate to the just-started server, we type, in terminal 2,

rcdaq_client daq_status

and you should see the answer “Stopped”. In a moment, we will see how to make
those unwieldy “rcdaq client” commands more convenient, but for now, we will
continue with this style for a few more commands.

The “-l” switch we will see in the next command stands for “long”. Multiple “-l”
switches will accumulate, although at this stage there is no more information to be
had. Later we will look at a “double-ell” – “-ll” – switch output.

$ daq_status -l

Stopped

Logging disabled

Filerule: rcdaq-%08d-%04d.evt

Buffer Sizes: 32832 KB adaptive buffering: 15 s

Web control Port: 8899

Elog: not defined

-- defined Run Types: (none)

No Plugins loaded

The last line says that we have not acquainted RCDAQ with any particular hardware
– as I said in the introduction, except for a very small number of natively built-in
“devices”, all support for actual readout hardware is loaded by the assorted plugin.

The “Buffer Sizes” and their setting are of interest and can be tweaked in a number
of situations; we will ignore this for now.

The Filerule will govern the generation of data file names later. It is used as a
“printf”-style format statement, where the printf takes two integer parameters. The
“%08d” and “%04d” formats make an 8- and 4-digit number field padded with
leading zeroes:

$ printf rcdaq-%08d-%04d.evt 1333 0

rcdaq-00001333-0000.evt

The first number is the current run number, and the second is a “file sequence
number” which is in use in the main PHENIX DAQ but currently unused and 0 in

8

RCDAQ. I may implement it later; it is used to make data of a given run roll over
into a new file if that file is getting too large for convenient handling.

The file rule can be changed at any time. The next data file will be named according
to the current rule.

Note that the rule above with the zero-padded fields will prevent spaces in file
names, but the rule can really be set to anything. You must check that your rule
generates valid and useful file names. You would normally choose a full path, such
as

/data/rcdaq/beamdata-%08d-%04d.evt

Finally we create a new readout device that fills our pretend-ADC data with random
numbers:

rcdaq_client create_device device_random 1 1001 32 0 2048 1

The command “create device” takes the device type (device random), the event
type in which it is read out (1), the packet id (1001), how many “channels” we
want our device to have (32), the lower and upper bounds of the random number
distribution (0 - 2048). In general, the parameters past the packet id are highly
device-specific and will configure the device as in this example. The final “1” means
that we designate this device as the one which actually generates the trigger for
the DAQ. We might have multiple devices which are trigger-capable, so we need to
specify this. If you do not specify any trigger device, you will not get any events.

As a convention (which you can ignore, of course), most RCDAQ users use packet
ids above 1000 in devices read in data events, and in the 800 or 900 block for other
event types (which we haven’t mentioned yet). It’s just a convention.

We can look at the defined readlist with

$ rcdaq_client daq_list_readlist

Random Device Event Type: 1 Subevent id: 1001 n_words: 32 range: 0 - 2048 ** Trigger enabled

$

which gives a brief description of the device and the parameters.

Now we start a run with number 1 (but keep in mind that we have not specified
that we want to write any data to disk yet):

$ rcdaq_client daq_begin 1

Run 1 started

After a moment, we look at the status:

$ rcdaq_client daq_status

Run 1 Event: 1054 Volume: 0.176605

It now indicates that we have a run 1, and we are currently at event 1054. The
volume is given in megabytes.

After a while we end the run:

9

$ rcdaq_client daq_end

Run 1 ended

When we start the next run without a number, the next number will be used:

$ rcdaq_client daq_begin

Run 2 started

$ rcdaq_client daq_end

Run 2 ended

Now we specify that we want to actually write data to disk, start a run (number
3), and look at the “long” status:

$ rcdaq_client daq_open

$ rcdaq_client daq_begin

Run 3 started

$ daq_status -l

Running

Run Number: 3

Event: 2

Run Volume: 3.05176e-05 MB

Filename: rcdaq-00000003-0000.evt

Duration: 34 s

Filerule: rcdaq-%08d-%04d.evt

Buffer Sizes: 32832 KB adaptive buffering: 15 s

Web control Port: 8899

Elog: not defined

-- defined Run Types: (none)

No Plugins loaded

We see that in addition to the file rule, we now also see the actual open file name
that was derived from the rule.

After you end the run, you will find (in this case with the default file rule) that file
in the directory where you started the rcdaq server.

Let’s take a quick peek at the data file. Without going into all the details, let’s run
“dlist”, which lists the packets found in a data event:

$ dlist -i rcdaq-00000003-0000.evt

-- Event 2 Run: 3 length: 44 type: 1 (Data Event) 1363583279

Packet 1001 36 -1 (ONCS Packet) 6 (ID4EVT)

$

ddump will inspect a packet and print out its content in an interpreted fashion.
ddump is a versatile utility which allows to inspect the data in a myriad of ways.
Here is one:

$ ddump -i rcdaq-00000003-0000.evt

-- Event 2 Run: 3 length: 44 type: 1 (Data Event) 1363583279

Packet 1001 36 -1 (ONCS Packet) 6 (ID4EVT)

0 | 5dd 512 403 152

4 | 160 51d 380 399

8 | 6d8 12 557 19d

10

c | 672 4f4 525 48

10 | 759 33a 759 51a

14 | 6aa 7fd 270 c8

18 | 4bd 4df 22a 6cf

1c | 1cb 7ff 3fa 653

$

This says it is event number 2. We can look at event 3 with the “-e 3” switch:

$ ddump -i -e 3 rcdaq-00000003-0000.evt

-- Event 3 Run: 3 length: 44 type: 1 (Data Event) 1363583279

Packet 1001 36 -1 (ONCS Packet) 6 (ID4EVT)

0 | b0 529 22 306

4 | 77e 4e1 3a0 bd

8 | 1c0 7ce 717 6a0

c | 1dd 343 4db 3e0

10 | 5e5 4e9 761 179

14 | 324 50f 705 3a6

18 | f7 17 c8 178

1c | 127 16 409 11a

$

This is just to show that the next event has different (random) numbers.

6 Making the commands more convenient

We have so far used the “long” versions of each rcdaq command, such as

$ rcdaq_client daq_begin 1

That is a lot of typing, and so we provide a script which you can source and which
sets up each command as a short-hand alias, for example, daq_begin will be an
alias for rcdaq_client daq_begin.

There are two versions of the script, one for the bash shell (aliases.sh), and one for
csh and its derivatives. You simple execute (note the back-ticks)

$ source ‘which aliases.sh‘

or

> source ‘which aliases.csh‘

depending on your preferred shell.

In scripts you should always use the long form of the commands.

Here are the aliases that you get:

alias daq_begin=’rcdaq_client daq_begin’

alias daq_end=’rcdaq_client daq_end’

alias daq_setrunnumberfile=’rcdaq_client daq_setrunnumberfile’

11

alias daq_define_runtype=’rcdaq_client daq_define_runtype’

alias daq_set_runtype=’rcdaq_client daq_set_runtype’

alias daq_get_runtype=’rcdaq_client daq_get_runtype’

alias daq_list_runtypes=’rcdaq_client daq_list_runtypes’

alias daq_setfilerule=’rcdaq_client daq_setfilerule’

alias daq_open=’rcdaq_client daq_open’

alias daq_close=’rcdaq_client daq_close’

alias daq_fake_trigger=’rcdaq_client daq_fake_trigger’

alias daq_list_readlist=’rcdaq_client daq_list_readlist’

alias daq_clear_readlist=’rcdaq_client daq_clear_readlist’

alias daq_status=’rcdaq_client daq_status’

alias daq_set_maxevents=’rcdaq_client daq_set_maxevents’

alias daq_set_maxvolume=’rcdaq_client daq_set_maxvolume’

alias daq_set_maxbuffersize=’rcdaq_client daq_set_maxbuffersize’

alias daq_setname=’rcdaq_client daq_setname’

alias daq_set_adaptivebuffering=’rcdaq_client daq_set_adaptivebuffering’

alias daq_shutdown=’rcdaq_client daq_shutdown’

alias daq_webcontrol=’rcdaq_client daq_webcontrol’

If you routinely use a specific account for rcdaq work, you should add the respective
source command to the login files.

7 Event types and what they are good for

A program able to read the data from your detector and writing the data to a file
does not yet qualify as a data acquisition - what is needed are features that allow
you to automate acquisitions, and add arbitrary “outside” data to your data stream.
It also needs to support your online monitoring needs.

Let’s say that you want to perform a gain scan by varying some HV setting for your
detector in a number of steps. In the old days, you would probably have made a
table in a paper logbook:

Run Number HV Gain

2001 1710

2002 1720

2003 1730

2004 1740

2005 1750

.

In the analysis phase, you would need to communicate these values to your analysis
process somehow, probably ending up with a text file which tabulates HV and gain
values with some error information which you use to finally produce the desired
plot.

This looks like a lot of tedious, manual, and error-prone labor – it is easy to make
a mistake transcribing the HV values to the table, or “slip” an entry and get the
alignment of the columns wrong. It is also largely not automated. In my experience,
you will re-do the analysis of such data sets many times over, and automation of
the procedure will help save a lot of time.

12

One of the most powerful features of RCDAQ, which is at the core of those acquisi-
tions and later analysis of the data “on autopilot”, are different Event Types. You
would typically think of a data acquisition as something that “reads out your detec-
tor” – the ADCs and TDCs and whatever it is you want to read out. In addition,
however, there is often the need to read other devices at different times.

Here is a real-world example from a previous DAQ of mine at the CERN-SPS,
which has also been used at BNL’s AGS. Both accelerators feature an extraction
cycle – the ring gets filled, the beam accelerated, and then the beam is extracted and
delivered to your beamline. The SPS cycle is about 14s, 10s of acceleration followed
by about 4s of extracted beam. The accelerator furnishes you with two signals, one
that indicates that the extraction is imminent (“Spill on”), the other saying that
the extraction has ended (“Spill off”). During the extraction, you obviously want to
“read your detector”, but most likely you will also need to know what the intensity
of each extraction (spill) was, in order to make intensity-dependent corrections later,
or study the effects on the detector’s gain by the delivered beam intensity. In order
to do that, you will need to read out some scalers which count the signals from your
beam counter, and likely other signals as well.

At CERN and at the AGS, I used the accelerator signals to trigger special “spill
on” and “spill off” events.1 They get assigned different event types, and when those
events are generated, they traverse different readlists. You would typically set the
different readlists up in a way that the spill-on event doesn’t actually read anything,
but simply resets the scalers. The readlist of the spill-off event has then the actual
readout of the scaler. This setup allows you to know the intensity of each spill.
Remember – different event types mean different readlists.

In addition, two more special events are automatically generated in each run. One
is the Begin-Run Event, the other the End-Run Event. You cannot prevent the
generation of those events, and all the promised benefits come with these two event
types.

Let me convince you that the begin- and end-run events are actually present in the
data file we just took. dlist and dpipe, by default, only look at data events, and we
have to explicitly ask to see special events:

$ dlist -i -t S rcdaq-00000003-0000.evt

-- Event 1 Run: 3 length: 8 type: 9 (Begin Run Event) 1363583279

$ dlist -i -t 12 rcdaq-00000003-0000.evt

-- Event 23125 Run: 3 length: 8 type: 12 (End Run Event) 1363583519

$

Since we have not specified any devices to be read in the begin- or end-run event,
no packets are listed. Those events are present but empty.

Before I explain why those special events are so tremendously useful, let me first
list the defined event types. You should not invent new event types, since those
are not known and understood by the analysis software (never mind that RCDAQ
cannot generate them anyway, unless you modify the code).

1At this point in time, spill-on or -off special events can only be generated if you use a CAEN
V1718 VME-USB bridge.

13

Event type meaning comment

1 Data Event Readout of your detector hardware

2 . . . 7 Data Events Not normally used by RCDAQ

8 Spill-On Event

9 Begin-Run Event Automatically generated by RCDAQ

12 End-Run Event Automatically generated by RCDAQ

14 Scaler Event Not normally used by RCDAQ

16 Spill-Off Event

You may notice that the events which can be triggered by a hardware signal (Data,
spill-on, spill-off) have numbers which are powers of 2. The historic reason for this
is that you typically use some kind of input register to distinguish the source of a
hardware trigger, and the binary value of such a register then reads 1,2,4,8,... for
the different inputs.

At long last, here’s why those special events (the ones actually generated by RC-
DAQ) are so useful.

• it is guaranteed that the begin-run event is the first event of a given run in
the data stream. Similarly, the end-run event will be the last event in the
run. If you have a continuous data stream that keeps on delivering events,
such as the stream that feeds your online monitoring processes, those events
can serve as convenient markers that a run has started or ended. On receipt
of the begin-run event, you would typically clear your monitoring histograms
and start histogramming the data from the new run. When you recognize the
end-run event, you might choose to save the histograms for later review.

• you can add information such as the aforementioned HV setting to the begin-
run event (this is not actually specific to special events, but it will probably
only make sense here). I will show you in the next chapter how to accomplish
this. In the begin-run event you will then find some packets that contain the
data which you are interested in.

Lets now see how you would go about adding some arbitrary information to your
data stream.

7.1 Pseudo Devices

“Pseudo Devices” are those which do not connect to any actual readout hardware,
or just perform some action without reading any data. The “device random” we
have used before is in this group.

The most prominent pseudo devices are

device file this device absorbs the contents of another (small2) file as its readout.

2Without going into all the details: if your file is expected to be larger than 128KB, you need
to say how big it is. RCDAQ needs to calculate the worst-case maximum event size per event
type, although virtually all events will be smaller due to zero-suppression. RCDAQ knows the
maximum sizes of each device except this one.

14

In this way, you can add the contents of any other file to your data stream.
You can use this to add a description, or add automatically generated files,
or even an image to the data stream. If the file does not exist, no packet is
generated. You can see on page ?? how we use this feature to self-document
the RCDAQ setup itself. It is not uncommon to have a large number of such
file devices in the begin-run event – at a recent test beam we had about 60 of
them to capture all relevant detector settings for each run.

device file delete like device file, except that this device also deletes the file after
it has been read. Use this device with caution. This device was added
to allow you to occasionally add some information to the data stream. Let’s
say that you want some “slow” readout added, for eample, a temperature
reading. Since no packet is generated if the file does not exist, you can define
a device file delete to the readout of data events, and most events will not
have the packet. But every few minutes, an external process, such as a cron
job, could generate the file with the temperature information. It will be added
as a packet in the next event and subsequently deleted, so it would be added
to one event only. In this way you could track the temperature over time.

device filenumbers this device reads a text file and looks for (integer) numbers
on a line all by themselves. While the device file adds the original text, de-
vice filenumbers discards the text and adds those numbers in binary form.
This makes them much easier accessible in the later analysis.

device filenumbers delete like device filenumbers, except that this device also
deletes the file after it has been read. See the explanation of device file delete
above.

device command this device does not add any data but executes an arbitrary
command. This way, you can trigger actions at certain times. You must
not call rcdaq client commands from the command, as this leads
to a deadlock. As a convenience, rcdaq defines a number of environmental
variables to the process executing the command, which make it easier for a
script to obtain dynamic information. The variables defined are

DAQ RUNNUMBER The current runnumber

DAQ FILERULE The current file rule that generates the file names

DAQ STARTTIME The starttime of the run as a Unix timestamp value

DAQ FILENAME The current file name. If logging is not enabled, this
variable will be empty. In this way you can find out if we are logging.

DAQ ELOGHOST, DAQ ELOGPORT, DAQ ELOGLOGBOOK the
coordinates of the elog server. This allows you to add or edit elog entries
from a script. If no Elog is defined, the variables are empty.

device random we have already seen the random number-generating device in the
example above.

15

device deadtime this device can add a configurable amount of artificial deadtime
anywhere in the traversal of the readlist. I could envision a few applications
in actual data taking, but mostly this is a debugging tool that can be used
to slow down the data rate, but also to make the event loop run as fast as
possible (enable this device to trigger but set zero deadtime) for benchmarks or
debugging. It can optionally pretend to generate adjustable amounts of data.
Different from daq device random, it wastes no time to fill in any meaningful
values. If you then enable writing, one can benchmark the “empty” DAQ
speed. See chapter ?? for details.

device rtclock this device records the current high-resolution system clock value,
as well as the same value from the most-recent event where this “device” was
read. See chapter ?? for an example how to use this.

Be sure to read to the end of the chapter where, after the following explanations, I
point out a nice self-documentation feature.

Now let’s go and get the HV setting of our detector added to the data stream.
We typically have some kind of command interface to the HV system. I use the
PHENIX hvclient here in the example, but let me stress that any such utility which
can print some output to the screen will fit the bill.

We add two devices to the begin-run event:

$ rcdaq_client create_device device_file 9 910 hv_readback.txt

$ rcdaq_client create_device device_filenumbers 9 911 hv_readings.txt

Out readlist now looks like this:

$ rcdaq_client daq_list_readlist

Random Device Event Type: 1 Subevent id: 1001 n_words: 32 range: 0 - 2048 ** Trigger enabled

File Device Event Type: 9 Subevent id: 910 reading from hv_readback.txt

File Number Reader Event Type: 9 Subevent id: 911 reading from hv_readings.txt

$

I then capture the output of the HV command interface in the “hv readback.txt”
file:

$ hvclient -b -s BB dv > hv_readback.txt

$ cat hv_readback.txt

HV_BB_S-1 1461 -1724.2 -1725.7 -2443.8 1 1 13

HV_BB_S-2 1461 -2057.4 -2059 -2578.3 1 1 13

HV_BB_S-3 1461 -1809.8 -1811.5 -2886.6 1 1 13

HV_BB_S-4 1461 -2227.1 -2227.6 -3157.1 1 1 13

HV_BB_S-5 1461 -2170.4 -2171.2 -3075.6 1 1 13

HV_BB_S-6 1461 -1563.2 -1563.7 -1938.1 1 1 13

HV_BB_S-7 1461 -1739.4 -1738.8 -2785 1 1 13

HV_BB_S-8 1461 -2080.9 -2081.8 -2955.1 1 1 13

HV_BB_N-1 1461 -1641.6 -1641.8 -2276 1 1 13

HV_BB_N-2 1461 -2494.2 -2494.5 -3089.6 1 1 13

HV_BB_N-3 1461 -1779.7 -1781.3 -2839.2 1 1 13

HV_BB_N-4 1461 -1956.6 -1957.9 -2711.5 1 1 13

HV_BB_N-5 1461 -1492.8 -1493.2 -2107.1 1 1 13

16

HV_BB_N-6 1461 -2220.2 -2221.1 -2754.8 1 1 13

HV_BB_N-7 1461 -1998.8 -1999.2 -3192.7 1 1 13

HV_BB_N-8

$

This gives the name of the HV channel, the hardware (LeCroy 1461), the demand
voltage, the actual voltage, and so on. This file will end up in packet 910 as normal
text.

Now we process the file to take the 4th column (the actual voltage), multiply by 100
to get an integer with the right range, and write to a new file “hv readings.txt”:

$ cat hv_readback.txt | awk ’{print $4 , "*100"}’ | bc | sed ’s/\..*//’ > hv_readings.txt

$ cat hv_readings.txt

-172570

-205900

-181150

-222760

-217120

-156370

-173880

-208180

-164180

-249450

-178130

-195790

-149320

-222110

-199920

-175350

Each number on a line will be added to packet 911 in binary.

Now we start and end a run:

$ rcdaq_client daq_begin

Run 4 started

$ daq_status -l

Running

Run Number: 4

Event: 1324

Run Volume: 0.5662 MB

Filename: rcdaq-00000004-0000.evt

Duration: 28 s

Filerule: rcdaq-%08d-%04d.evt

Buffer Sizes: 32832 KB adaptive buffering: 15 s

Web control Port: 8899

Elog: not defined

-- defined Run Types: (none)

No Plugins loaded

$ rcdaq_client daq_end

Run 4 ended

$

If we now look what the begin-run event has, we see

$ dlist -i -t 9 rcdaq-00000004-0000.evt

17

-- Event 1 Run: 4 length: 324 type: 9 (Begin Run Event) 1363614653

Packet 910 296 -1 (ONCS Packet) 4 (IDCSTR)

Packet 911 20 -1 (ONCS Packet) 6 (ID4EVT)

$

We see packet 910, which says it is a ”IDCSTR” packet, meaning it contains text,
and 911, which is of type ”I4EVT” (the same as our random-number packet), which
contains a vector of integer numbers. Let’s look inside:

$ ddump -i -t 9 -p 910 rcdaq-00000004-0000.evt

-- Event 1 Run: 4 length: 324 type: 9 (Begin Run Event) 1363614653

HV_BB_S-1 1461 -1724.2 -1725.7 -2443.8 1 1 13

HV_BB_S-2 1461 -2057.4 -2059 -2578.3 1 1 13

HV_BB_S-3 1461 -1809.8 -1811.5 -2886.6 1 1 13

HV_BB_S-4 1461 -2227.1 -2227.6 -3157.1 1 1 13

HV_BB_S-5 1461 -2170.4 -2171.2 -3075.6 1 1 13

HV_BB_S-6 1461 -1563.2 -1563.7 -1938.1 1 1 13

HV_BB_S-7 1461 -1739.4 -1738.8 -2785 1 1 13

HV_BB_S-8 1461 -2080.9 -2081.8 -2955.1 1 1 13

HV_BB_N-1 1461 -1641.6 -1641.8 -2276 1 1 13

HV_BB_N-2 1461 -2494.2 -2494.5 -3089.6 1 1 13

HV_BB_N-3 1461 -1779.7 -1781.3 -2839.2 1 1 13

HV_BB_N-4 1461 -1956.6 -1957.9 -2711.5 1 1 13

HV_BB_N-5 1461 -1492.8 -1493.2 -2107.1 1 1 13

HV_BB_N-6 1461 -2220.2 -2221.1 -2754.8 1 1 13

HV_BB_N-7 1461 -1998.8 -1999.2 -3192.7 1 1 13

HV_BB_N-8 1461 -1752.2 -1753.5 -2485.3 1 1 13

$ ddump -t 9 -p 911 -g -d rcdaq-00000004-0000.evt

Packet 911 20 -1 (ONCS Packet) 6 (ID4EVT)

0 | -172570 -205900 -181150 -222760 -217120 -156370

6 | -173880 -208180 -164180 -249450 -178130 -195790

12 | -149320 -222110 -199920 -175350

$

Mission (almost) accomplished. If you run an HV scan from a script that steps
through a number of HV settings, it is easy to add the HV-capturing commands to
that script. However, if you are in a mode where you start and stop runs manually,
it is easy to forget to update the files each time.

This is where our final pseudo device is coming in, the “device command”. We will
use this to automatically execute the HV-capturing commands at begin-run. Since
especially the second command has a large number of characters which would need
to be escaped when used on the command line, we sidestep all those issues and put
the two commands into a script, and then just execute the script.

$ cat hvcapture.sh

#! /bin/sh

hvclient -b -s BB dv > hv_readback.txt

cat hv_readback.txt | awk ’{print $4 , "*100"}’ | bc | sed ’s/\..*//’ > hv_readings.txt

$

First, we need to start over with our readlist, because we have to make it so that
the new command is executed before the files are accessed. We delete the readlist:

18

$ rcdaq_client daq_clear_readlist

Readlist cleared

$

Now we add the command, and the two file-reading devices. You need to make sure
that the script is executable and properly found by the server process. You would
probably want to specify an absolute path to the script later.

$ rcdaq_client create_device device_command 9 0 ’./hvcapture.sh’

$ rcdaq_client create_device device_file 9 910 hv_readback.txt

$ rcdaq_client create_device device_filenumbers 9 911 hv_readings.txt

$ rcdaq_client daq_list_readlist

Command Device Event Type: 9 executing ./hvcapture.sh

File Device Event Type: 9 Subevent id: 910 reading from hv_readback.txt

File Number Reader Event Type: 9 Subevent id: 911 reading from hv_readings.txt

$

Now all this is on autopilot, and we will always have the current HV readback in
the data file.

7.2 Self-documenting your setup

Let me quickly point out a trick that allows you to go back to your raw data and
see how RCDAQ was configured in the first place.

We have seen the commands

rcdaq_client create_device device_file 9 910 hv_readback.txt

rcdaq_client create_device device_filenumbers 9 911 hv_readings.txt

which we gave, ostensibly from the command line, to configure rcdaq.

Of course, in almost all cases, you are not going to type this in on the fly, but put
this into a script, such as this “setup.sh”:

#! /bin/sh

rcdaq_client create_device device_file 9 910 hv_readback.txt

rcdaq_client create_device device_filenumbers 9 911 hv_readings.txt

Now you could (but wait!) just add another device

#! /bin/sh

rcdaq_client create_device device_file 9 900 "$0"

rcdaq_client create_device device_file 9 910 hv_readback.txt

rcdaq_client create_device device_filenumbers 9 911 hv_readings.txt

You see packet 900 with “$0”? That of course refers to the name of the script itself,
“setup.sh”, and it will then be added and captured in packet 900 in the begin-run,
so you can later see how rcdaq was configured to begin with.

However, there is one small problem. You will likely invoke the script as

19

./setup.sh

so the “$0” parameter will be “./setup.sh”. If the rcdaq server process is not run
from the exact same directory where that script resides, it will not be able to find
the script.

You could either be disciplined enough to always invoke the script by its full path-
name (not very likely to succeed), or you could rewrite it as follows:

#! /bin/sh

D=‘dirname "$0"‘

B=‘basename "$0"‘

MYSELF="‘cd \"$D\" 2>/dev/null && pwd || echo \"$D\"‘/$B"

rcdaq_client create_device device_file 9 900 "$MYSELF"

rcdaq_client create_device device_file 9 910 hv_readback.txt

rcdaq_client create_device device_filenumbers 9 911 hv_readings.txt

In the standard setup is a full-blown example script (setup.sh)which you can use
as a template.

8 Command overview

The command rcdaq_client help lists all available rcdaq commands:

help show this help text

daq_status [-s] [-l] display status [short] [long]

daq_open enable logging

daq_begin [run-number] start taking data for run-number, or auto-increment

daq_end end the run

daq_close disable logging

daq_setfilerule file-rule set the file rule default rcdaq-%08d-%04d.evt

daq_list_readlist display the current readout list

daq_clear_readlist clear the current readout list

daq_define_runtype type file-rule define a run type, such as "calibration"

daq_set_runtype type activate a predefined run type

daq_get_runtype [-l] list the active runtype (if any)

daq_list_runtypes [-s] list defined run types

daq_set_maxevents nevt set automatic end at so many events

daq_set_maxvolume n_MB set automatic end at n_MB MegaByte

load shared_library_name load a "plugin" shared library

create_device [device-specific parameters]

daq_setname <string> define an identifying string for this RCDAQ instance

daq_setrunnumberfile file define a file to maintain the current run number

daq_set_maxbuffersize n_KB adjust the size of buffers written to n KB

daq_set_adaptivebuffering seconds enable adaptive buffering at n seconds (0 = off)

daq_webcontrol <port number> restart web controls on a new port (default 8080)

20

elog elog-server port specify coordinates for an Elog server

daq_shutdown terminate the rcdaq backend

The “short” versions of the commands (with the -s flag, which at some point
actually stood for “script”) are generally there for the benefit of scripts (typically
the GUIs, which are all written in Perl/Tk). The output is usually easy to parse by
a script, but less easy to digest by humans, such as

$ daq_status -s

-1 0 0 0 0 0

Let’s go through the commands:

daq status This displays the status of RCDAQ. The -l flags accumulate and in-
crease the detail of the status report.

daq open This enables the writing out of data to disk. You may wonder why one
would choose to not log the data, but there are many situations where you are
timing in your trigger, test the readout speed, or exercise the DAQ without
cluttering your storage with files taken with ever-changing settings.

daq begin Start taking data. If you supply a run number, this run number will
be used. Without a run number, the last run number will be incremented.
Also see the daq_setrunnumberfile command which allows you to make run
numbers persistent between restarts of the rcdaq server.

daq end Ends the run.

daq close Disables logging.

daq setfilerule file-rule Set the file rule. You should always set a specific rule
because with the default rule, rcdaq-%08d-%04d.evt, the data files will end
up in the same area where rcdaq was started from. Be sure to have a look
at the 4 commands managing run types, such as daq_define_runtype, which
allows you to pre-set a few file rules, and switch between them quickly.

daq list readlist Displays the current readout list.

daq clear readlist Clears the current readout list.

daq define runtype This command, which takes a “mnemonic” and a file rule as
parameters, allows you to pre-set an arbitrary number of different file rules.
You will be able to switch between them quickly. In chapter ?? we show a
convenient GUI to quickly switch between what I call run types, which uses
the following example. Here I define

rcdaq_client daq_define_runtype pedestal /data/rcdaq/pedestal/pedestal_%010d-%04d.evt

rcdaq_client daq_define_runtype beam /data/rcdaq/beam/beam_%010d-%04d.evt

rcdaq_client daq_define_runtype calibration /data/rcdaq/calibration/calibration_%010d-%04d.evt

rcdaq_client daq_define_runtype junk /data/rcdaq/junk/junk_%010d-%04d.evt

21

and then quickly switch between them, making the data appear in the specified
location. This allows you to keep, say, pedestal or calibration runs apart from
actual beam runs, and have more meaningful file names. There is no practical
limit to the number of such types. However, it is no more than a convenient
shortcut to set file rules. You can still manually set a file rule which is different
from any of the defined ones.

daq set runtype type This sets the file rule to the predefined file rule, such as
(from the example above)

rcdaq_client daq_set_runtype beam

daq get runtype This lists the active run type (if any – if the file rule is not set
to any of the predefined ones, it will return nothing). It takes the “long” -l

switch. Without it, it will just list the type, with the long flag it will also list
the rule.

daq list runtypes Lists the defined run types, the short version just the names,
else also the rules.

daq set maxevents nevt Set an automatic end of a run at so many events. Set-
ting it to 0 resets the event limit.

daq set maxvolume nMB Set an automatic end of a run after so many megabytes
of data have been accumulated. Setting it to 0 resets the size limit.

load shared library name This loads a ”plugin” shared library. Since rcdaq
doesn’t really know about any meaningful devices to read, you will have to
load at least one plugin for serious work.

create device This sets up a device to be read out. The parameters past the
packet id are very device-specific.

daq setrunnumberfile filename This defines a file where rcdaq maintains the
current run number. Normally, the rcdaq server remembers the most recent
run number, and it gets incremented for each run. When the server is started,
however, the run number defaults to 0, and for the first run, you have to set
it manually. This mechanism lets you make that process persistent across
restarts of the server. Example:

rcdaq_client daq_setrunnumberfile $HOME/.last_rcdaq_runnumber.txt

daq set maxbuffersize n KB Adjust the size of buffers to n KB. With the ad-
vent of “adaptive buffering” (next command), this can largely be ignored.
This command was available mostly for the benfit of the online monitoring,
since the monitoring receives one buffer at a time. If you have a low data rate
(think a cosmics telescope) and small events, it can take several minutes (or
even hours) for a large buffer to be filled and the monitoring to receive data.
This was the reason why one could reduce the buffer size, to feed the online

22

monitoring a more steady data stream. This was very sub-optimal, because
the data taking efficiency is lower with smaller buffers, so one (small) size does
not fit all. This brings us to the next command:

daq set adaptivebuffering seconds This is a much better solution for the above
problem. By default, adaptive buffering is enabled and preset to 15 seconds.
A buffer is now flushed when it is either full or the time period has elapsed,
and there are no more rate-dependent adjustments. Unless there there is a
specific reason, you should leave the adaptive buffering switched on. Setting
the time to 0 disables adaptive buffering.

daq webcontrol port number Start the web-based controls on the given port
number (defaults to port 8899 if omitted). See chapter ?? for details.

elog elog-server port logbook Specify the whereabouts for an Elog server where
rcdaq can make automated entries.

daq shutdown Ask the rcdaq server to gracefully shut down. It will not shut
down if a run is in progress.

9 Standard GUIs

There are 4 standard GUIs which come with rcdaq. There is a control GUI, a status
display (essentially the control GUI without the action buttons), a “Run Type
Chooser” GUI, and a configuration GUI which will take a bit more explanation.

The most important design concept is that all standard GUIs are stateless. You
can start a run from the control GUI, end it via the command, or have multiple
copies of the same GUI and click “Start” in one and “Stop” in the other. All GUIs
and buttons will (with a minimal time lag of about one second) always adapt to the
state of the DAQ. A particular GUI does not remember that it was it which started
the run, etc.

The GUIs are resilient and deal with a shutdown of the rcdaq server gracefully, so
you can let them sit on the screen and they will always reflect the status of the
DAQ.

9.1 The Control Gui

This is the workhorse GUI which allows to control the “operational” aspects of
RCADQ - daq_open, daq_begin, daq_end, and daq_close. It will also display
some useful information, such as the run number, duration of the run, the currently
open file, if any, and so on.

You start the GUI with

rcdaq_control.pl &

23

The GUI is shown here in different states; first with logging disabled, stopped and
running; and logging enabled, stopped and running. You can see the different
information displayed.

9.2 The Status GUI

This GUI is essentially a stripped-down version of the control GUI. It does not have
the action buttons. If you just want to keep an eye on the status, there is no danger
that you inadvertently click a button and interfere with the data taking.

You start it with

rcdaq_status.pl &

and get

24

Since this is a completely passive GUI, you can also use it to display the status on an
overhead monitor which is found in many control rooms. For that reason, it supports
three options, --large, --display=<display>, and --geometry=<geometry>. The
--large option enlarges the GUI so that you can see it from a distance, and the
other options allow you to send it to a remote display and position it properly, for
example

rcdaq_status.pl --display=phnxtv1.phenix.bnl.gov:0.0 --geometry=+100+100 --large &

9.3 The Run Type Chooser GUI

If you have run types defined, say, along the example from before

$ daq_list_runtypes

beam - /data/rcdaq/beam/beam_%010d-%04d.evt

calibration - /data/rcdaq/calibration/calibration_%010d-%04d.evt

junk - /data/rcdaq/junk/junk_%010d-%04d.evt

pedestal - /data/rcdaq/pedestal/pedestal_%010d-%04d.evt

then you can easily select the type with this GUI. Type

rcdaq_runtypechooser.pl &

and you will get

25

Each defined type brings up a button which allows you to select the run type easily.

Despite appearances, this GUI is stateless, too. The buttons merely set the run
type in the rcdaq server, but the display is updated not from the button click but
from information from the server, so the GUI will reflect the changes if you change
the run type from the command line.

This GUI will gracefully deal with a shutdown of the server, however, it will get
confused if you change the list of run types. I think this is a small inconvenience,
because the run types are usually pretty static. If they do change, this GUI needs
to be restarted.

9.4 The Configuration GUI

This brings us to our last GUI, which is a bit more complex. We are supporting
setups where the researchers are used to selecting the setup from a long scroll-down
list of pre-made standard configurations, depending on what the experiment of the
day is. This in itself is not so difficult, but soon you run into a complication in
defining what such a “setup” actually is.

You will likely find the area teeming with a number of shell or perl scripts for
different purposes, along with the top-level scripts which define the various setups.
It is good practice to have those individual setup scripts call more generic other
scripts with the proper parameters, in order to avoid a proliferation of “flat” all-
in-one scripts. This immediately leads to the need to identify the actual top-level
scripts which are meant to be listed in that GUI. Attempts to seclude those in a
particular area only have, quite predictably, not worked.

For this reason, we invented a scheme in which we identify those “GUI-grade” scripts
by certain tags, which are comments in the script.

If you look at the setup.sh example script in the main rcdaq source directory, you
will see the following comments:

#! /bin/sh

the following line identifies this script as one to be

listed in the configuration GUI

--RCDAQGUI

lines starting with the "--SC" tag are short comments

(can be only one, later ones override earlier ones)

--SC Top Level setup script with a random device

lines starting with the "--SC" tag are long comments

--LC This setup script is part of the RCDAQ distribution.

--LC It uses the random device (i.e. no particular hardware)

--LC and can run on any machine to give RCDAQ a spin.

--LC It can serve as a template to develop your own setups.

The --RCDAQGUI tag identifies this script as one to be listed in the GUI. Then there

26

are “short comments”, which act as tooltip help (when you hover the mouse), and
“long comments”, which are displayed once you select the GUI.

If you run

rcdaq_configmenu.pl &

in the directory where this setup.sh script resides, you will see

(in this case there is only one such script, but all “GUI-enabled” scripts will be
shown but not any others. If you hover the mouse, you will see the tooltip with the
“short comment” (which can only be one line):

Selecting this then displays the longer help text, and you can see if this script is
what you wanted:

27

Once selected, you can then choose to execute the script, or cancel.

10 Web-based Controls

The GUIs shown in the previous chapter are based on the “Tk” graphics widget
set and are implemented in Perl. While extremely versatile, Perl-Tk is not readily
available on every platform, and requires additional libraries to be installed. On
several Linux flavors in widespread use, such as RedHat and Scientific Linux, Tk
can be installed but is not part of the software management system, and needs to
be installed from source. In addition, the Tk system requires the availability of the
X11 graphics system, which eliminates all platforms that do no support X11, such
as iPads and iPhones. On other platforms like Windows and most smart phones
and tablets, the “Tk” component is extremely difficult to install or is not available
at all.

Recent advances in web technologies have converted the web browser into a viable
platform for slow controls, with the advantage that the underlying technologies
are available in most modern browsers on virtually any platform, including smart
phones and tablets.

By adding a GUI technology that uses web-based controls, it is possible to imple-
ment the RCDAQ GUIs in a truly platform-independent fashion. This makes them
available on platforms which could not support the GUIs before, such as smart
phones, tablets, and even iPads, which have the most restrictive execution environ-
ment of all platforms.

10.1 The Web-based RCDAQ Control GUI

The web-based control interface acts like a web server running on the chosen port.
Since the RCDAQ system cannot make any assumptions about port numbers avail-
able on your system, the web-based control interface cannot be brought up auto-
matically at startup. The default port is 8899, but you can choose any port number
that is available on your system.

You need to start the web control interface with the command

28

Figure 1: The new web-based control GUI for the RCDAQ system in various states
of the RCDAQ operation. The upper left shows the GUI in the idle state, then in
the running state, while logging, and when the RCDAQ server has been shut down.

rcdaq_client daq_webcontrol <port number>

For example,

rcdaq_client daq_webcontrol

starts the interface on the default port number 8899. You can then access the
web-based controls on your local machine where RCDAQ is running as

http://localhost:8899

or on another system as

http://your.daq.machine:8899

It is highly recommended that you add the web control startup command to your
startup script.

B
Keep in mind that RCDAQ is running without special privileges and cannot
use any privileged ports such as the “http” port 80. If you use a port number
different from the default, you must use a non-privileged port higher than
1024, and it is recommended that you use a port number above 8000.

29

At this point in time, only the equivalent of the standard control GUI has been
implemented as a web-based control. The web-based equivalent of the “Status”
GUI, shown on page ??, will be implemented in an upcoming version.

Over time, the web controls will make it easy to add other amenities such as ready-
made strip charts of the system performance, such as “events taken per minute” or
“data volume as a function of time”.

Figure 2: The new web-based controls for the RCDAQ system running in the web
browser on an Android phone.

To show the enhanced possibilities of the web-based controls, Fig. ?? shows a screen
shot of the controls running in the browser on my Android phone. In the same way,
it is now possible to run the controls on iPads and basically any platform with a
modern web browser.

11 pmonitor, the Monitoring and Analysis Frame-

work

Virtually all analysis of raw data in PHENIX takes place in a framework called
pmonitor. Designed as an online monitoring framework to be run within root, it
has a number of features which make it a true monitoring package, most importantly,
the ability to look at or in general manipulate histograms or similar objects while
they are filled with new data. However, if you leave the online capabilities alone,
you have an offline analysis framework. An existing online monitoring project can
be run in an offline setting without changes.

Pmonitor is not a program but a framework, which allows you to quickly code up
the monitoring or analysis needed for your specific setup. It relieves you from most
repetitive and mundane tasks, such as opening or closing data streams, programming
an event loop, adding code to save histograms, and the like. It also shields you from

30

the effort and pitfalls of programming a multi-threaded program; it is already multi-
threaded to allow the analysis of the event stream (and filling of histograms etc) in
the background.

The setup-specific pmonitor projects (a “project” is what we call a particular piece of
code running in the pmonitor framework) are easy to make, and usually lightweight.
It is not uncommon to have a number of different projects, for example, one to help
timing in the detector, one for the expert-level online monitoring, and more for
the offline analysis (although that “offline” analysis can be run just the same in an
online setting if this makes sense for your setup).

The pmonitor package comes with a script to generate the code for an “empty”
pmonitor skeleton project which you can hash out with code to analyze your data.
The script writes a Makefile for you, the required Linkdef file so it can get root
bindings, a header file, and the C++ code stub which has all required routines.
The unmodified skeleton code compiles and can be run, but doesn’t do anything
useful, obviously. The distribution ships with several examples which you can build
and run with data taken with RCDAQ.

A Examples

I show a few examples of real-life setups that were used in the past.

I will expand on this chapter as time progresses.

A.1 Running Speed Tests

Let’s say that you want to see how fast your system can take data when you pull
out all the stops. Actually reading out devices later will invariably slow you down,
but it is good to know where the limits of your disk, CPU, and network are.

I mentioned the daq_device_deadtime pseudo-device. It may sound odd that you
can use a device that adds artificial deadtime for a speed test, but here is how it
works.

Let me first show how to actually generate artificial deadtime. At the time I write
this at the FermiLab Test Beam Facility, it is unclear if we will need this for the
benefit of a MWPC, which may be able run at only 100Hz (remains to be seen).
Then we would add, say, 150 microseconds deadtime:

rcdaq_client create_device device_deadtime 1 0 150

The 3rd parameter is the deadtime added in units of the Unix usleep system call,
which is meant to be microseconds, but you may have to calibrate and adjust the
unit on your system a little bit.

With the above parameters, it will not add anything to the data stream (that’s why
the packet id is set to 0). It can, however, add an adjustable amount of data to
the event (and generate a packet, obviously). And it can also provide the system
trigger. That allows you to dial in any desired data rate. Here is how you run the

31

speed test: You set the deadtime to 0 (no deadtime), set a packet id (I chose 1005
here), have the device add 64 (32-bit) words to the event, and provide the system
trigger (the last “1”). Since this is now the only device defined in a data event, it
will run as fast as it can:

rcdaq_client create_device device_deadtime 1 1005 0 64 1

You can reduce the number of words to test the inner mechanics of RCDAQ on your
PC (how fast it can go through the paces to kick off the event reading), or increase
the number to test the limits of your storage system.

Be warned, though, that the artificial data do not have meaningful values. Different
from the device_random, this devices wastes no time filling in any actual values;
it just says that it has added so many words, no matter what the contents of the
packet payload are.

A.2 Measuring Event Timing

Especially under test beam conditions, it is often useful to see what the “spacing” in
time between events is. Ideally, you would expect a somewhat balanced distribution
with events being apart in time by roughly the same amount, but very often you find
that there is a macroscopic structure in that distribution for a myriad of reasons.

If you see that in a beam setting, you should definitely find out why that is. This
usually points to some undesired feature in the beam, which might have a mi-
crostructure, or some other structure.

A trivial way of getting such an artificial structure is to have a really slow file system
to write the data to, such as a USB stick or something similarly slow. Then the time
it takes to write out a buffer to storage is much longer than the time it takes to fill it.
RCDAQ uses a double-buffering scheme so one buffer is getting filled while another
one is being written to disk. In modern solid-state disks and especially in today’s
RAID systems, the writing is virtually always faster than the filling. However, if
the writing is slow, the readout needs to wait for the writing to complete before
that buffer becomes available again, and the busy goes up.

In order to measure the distance between events, the system offers a built-in pseudo
device device_rtclock. This device uses the clock_gettime system service and
retrieves the CLOCK_MONOTONIC_RAW system clock, which is strictly continuous and
not affected by “jumps” due to NTP-driven or manual time adjustments. The clock
reports clock ticks in units of nanoseconds, but that may need a system-dependent
calibration. Still, it provides a “heartbeat” to gauge the relative timing of events.

The device records both the current clock value, as well as the same value from
the last event where the “device” was read out. This makes it easy to compute the
relative timing of events.

Here is an example how to set up such a pseude device in a data event:

rcdaq_client create_device device_deadtime 1 1010

32

It does not take any configuration parameters, only the event type and the packet
id.

A.3 Adding a webcam picture to a packet

In this setup we use a detector that gets positioned with a step motor. While we save
the motor positions in the begin-run event, it is nice to have a visual confirmation
that the detector is in the right place. To get this, we add a webcam picture to the
begin-run event. The webcam looks at the detector with a ruler in the background,
so you get a rough verification that the detector at least moves in the right direction.

While there are many ways to get a webcam picture, the most flexible solution is to
run the “motion” utility on the system. motion is a surveillance tool designed to
monitor a video stream and record video whenever motion is detected in the feed,
where motion can be defined in a highly flexible manner. In addition, the utility
provides a web interface to a live video stream, and has the ability to take snapshots
in predefined intervals independent of detected motion in the picture. All streams
and pictures carry a time stamp.

I usually adjust the threshold for motion recognition rather high so no actual video
gets recorded, although that of course depends on your setup. The sequence of
snapshot files later provides a rough timeline of events if needed. The web interface
allows to remotely monitor the camera at any time. For getting a picture from the
camera, I provide a simple perl script in the distribution which reads the web live
stream and extracts and saves one frame.

The script is called “motion_cam_parse.pl” and takes the URL of the webcam
feed as an argument. Assuming that motion runs on the local machine and the live
feed appears on the standard port 8081, we can get one picture:

motion_cam_parse.pl http://localhost:8081 > cam_picture.jpg

I usually wrap this into a shell script “capture_picture.sh”:

#! /bin/sh

this captures a picture to the provided filename,

or cam_picture.jpg

FILE="$1"

[-z "$FILE"] && FILE=cam_picture.jpg

motion_cam_parse.pl > "$FILE"

and then we configure rcdaq as follows:

#! /bin/sh

D=‘dirname "$0"‘

B=‘basename "$0"‘

MYSELF="‘cd \"$D\" 2>/dev/null && pwd || echo \"$D\"‘/$B"

rcdaq_client create_device device_file 9 900 "$MYSELF"

33

add the camera picture

rcdaq_client create_device device_command 9 0 "/home/eic/capture_picture.sh /home/eic/cam_picture.jpg"

rcdaq_client create_device device_file_delete 9 940 /home/eic/cam_picture.jpg

.. lines deleted...

We use device_file_delete so it is impossible to add a stale picture if there is a
problem getting the current one.

A.4 The GEM Detector Readout at the FermiLab Test Beam,
February 2014

This setup is building on the previous example in the sense that we are adding a
lot of configuration information and two camera snapshots to the begin-run event.
We also have 5 different run types defined.

First, we let the main RCDAQ configuration script figure out if there is a rcdaq_server
running by issuing a daq_status command and testing its return status. If that
fails, we need to start the server. At this point, we also define the Elog whereabouts.

#! /bin/sh

if ! rcdaq_client daq_status > /dev/null 2>&1 ; then

echo "No rcdaq_server running, starting..."

rcdaq_server > $HOME/log/rcdaq.log 2>&1 &

sleep 2

ELOG=$(which elog 2>/dev/null)

[-n "$ELOG"] && rcdaq_client elog localhost 666 RCDAQLog

fi

This is the “make an absolute path” routine you already know:

we need the $0 as absolute path b/c we pass it on to a "file" device further down

D=‘dirname "$0"‘

B=‘basename "$0"‘

MYSELF="‘cd \"$D\" 2>/dev/null && pwd || echo \"$D\"‘/$B"

We make the current run number persistent:

rcdaq_client daq_setrunnumberfile $HOME/.last_rcdaq_runnumber.txt

And we find out if the SRS plugin is loaded already:

if ! rcdaq_client daq_status -l | grep -q "SRS Plugin" ; then

echo "SRS plugin not loaded yet, loading..."

rcdaq_client load librcdaqplugin_srs.so

fi

And now we assemble the pieces that we want to add to the begin-run event.

• Packet 900 will hold the configuration script itself

34

• we execute the command srs_control readapv > $HOME/apv.txt. It ex-
tracts most of the relevant setup parameters from the SRS crate and writes it
to the file.

• we execute /home/eic/rcdaq_setup/prepare_run.sh. This script

– reaches out to the motor rotation controller, queries the current position,
and writes the value into current_position.txt;

– turns on a small light underneath the turntable for a moment and takes
a picture from a webcam which looks at the scale for visual confirmation;
the picture goes into an image file called “snapshot.jpg”;

– it makes a similar snapshot from a permanently mounted overhead cam-
era as “overhead_snapshot.jpg”.

• we then add the “apv.txt” file as packet 910;

• we add “current_position.txt” as packet 940;

• we add “snapshot.jpg” as packet 941;

• and we add “overhead_snapshot.jpg” as packet 942.

we add this very file to the begin-run event

rcdaq_client create_device device_file 9 900 $MYSELF

rcdaq_client create_device device_command 9 0 "srs_control readapv > $HOME/apv.txt"

rcdaq_client create_device device_command 9 0 "/home/eic/rcdaq_setup/prepare_run.sh"

rcdaq_client create_device device_file 9 910 $HOME/apv.txt

rcdaq_client create_device device_file 9 940 $HOME/current_position.txt

rcdaq_client create_device device_file 9 941 $HOME/snapshot.jpg 128000

rcdaq_client create_device device_file 9 942 $HOME/overhead_snapshot.jpg 128000

The remainder of the set up script is straightforward; we set up the run types, set
“junk” as default, and finally define the readout of the SRS crate:

rcdaq_client daq_define_runtype beam /data/gem/beam/beam_%010d-%04d.evt

rcdaq_client daq_define_runtype noSi /data/gem/noSi/no_si_%010d-%04d.evt

rcdaq_client daq_define_runtype junk /data/gem/junk/junk_%010d-%04d.evt

rcdaq_client daq_define_runtype calibration /data/gem/calibration/calibration_%010d-%04d.evt

rcdaq_client daq_define_runtype pedestal /data/gem/pedestal/pedestal_%010d-%04d.evt

rcdaq_client daq_setruntype junk

rcdaq_client create_device device_srs 1 1010 10.0.0.2 1

And here is the composition of the begin-run event:

$ dlist -i -t 9 beam_0000000451-0000.evt

-- Event 1 Run: 451 length: 17431 type: 9 (Begin Run Event) 1392306649

Packet 900 614 -1 (ONCS Packet) 4 (IDCSTR)

Packet 910 142 -1 (ONCS Packet) 4 (IDCSTR)

Packet 940 7 -1 (ONCS Packet) 4 (IDCSTR)

Packet 941 3643 -1 (ONCS Packet) 4 (IDCSTR)

Packet 942 13017 -1 (ONCS Packet) 4 (IDCSTR)

35

If we now want to find out the position of the turntable, we can have a look at
packet 940:

$ ddump -t 9 -p 940 /media/psf/Home/srs/GEM/beam/beam_0000000472-0000.evt

-0000020

$

(-20 is actually the “zero” position, 80 ticks mean one degree, the the zero marks
are aligned at this value.)

Here is another run:

$ ddump -t 9 -p 940 /media/psf/Home/srs/GEM/beam/beam_0000000474-0000.evt

+0002380

$

which is at 2380 (+20) ticks (30 degrees).

In case there seems something wrong, one can extract the webcam snapshots:

$ ddump -t 9 -p 941 beam_0000000472-0000.evt > 472.jpg

$ ddump -t 9 -p 942 beam_0000000472-0000.evt > 472_overhead.jpg

$ ddump -t 9 -p 941 beam_0000000474-0000.evt > 474.jpg

$ ddump -t 9 -p 942 beam_0000000474-0000.evt > 474_overhead.jpg

Here you can see these snapshots:

This is great for potential forensics and a visual conformation that the detector was
at the right position.

36

B Installation

B.1 Installing the software

The installation is rather straightforward. You put the rcdaq distribution in a good
place in your file system, make a “build” and an “install” directory, and build in the
standard way. In this example, I have the distribution in the /home/purschke/softwarerepo
area. In there is the rcdaq directory, as well as any rcdaq plugin distribution you
may need (I also have built the “srs” plugin here, as well as the online distribution,
which we need for the analysis and monitoring packages).

$ pwd

/home/purschke/softwarerepo

$ ls

build install online_distribution rcdaq srs

In the build area, I make matching directories to build each package in:

$ ls build/

online_distribution rcdaq srs

I then cd to the build/rcdaq area, and execute

$ cd build/rcdaq

$../../rcdaq/autogen.sh --prefix=/home/purschke/softwarerepo/install

$ make install

Although not technically part of this manual, let me also show how to install the
online distribution. It goes analogous to the procedure shown for rcdaq and srs.
However, since it always has a fixed order of building the collection of sub-areas,
there is a ready-made script which executes the commands in the right order:

$ cd ../online_distribution

$ pwd

/home/purschke/softwarerepo/build/online_distribution

$../../online_distribution/simple_install.sh /home/purschke/softwarerepo/install

Important: You need to define an environmental variable ONLINE_MAIN to point to
the installation area (in this example here, to /home/purschke/softwarerepo/install):

$ export ONLINE_DISTRIBUTION=/home/purschke/softwarerepo/install

or, should you still be using a csh-derivative:

$ setenv ONLINE_DISTRIBUTION /home/purschke/softwarerepo/install

Then you should add (or define as) $ONLINE_MAIN/lib to LD_LIBRARY_PATH, and
add $ONLINE_MAIN/bin to your PATH.

Here is my $HOME/.bash_login file:

37

export ONLINE_MAIN=/home/purschke/softwarerepo/install

PATH=$PATH:$ONLINE_MAIN/bin

export LD_LIBRARY_PATH=$ONLINE_MAIN/lib

source $ONLINE_MAIN/bin/aliases.sh

Check first if your system already defines a LD_LIBRARY_PATH. You can find this out
by issuing echo $LD_LIBRARY_PATH before you modify your login file. Sometimes
this is done if other custom packages are installed. In that case, you want to append
to it, and the second last line becomes

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ONLINE_MAIN/lib

The very last line

source $ONLINE_MAIN/bin/aliases.sh

sets up the aliases that make your commands more convenient. See chapter ?? for
the details.

B.2 System Requirements

RCDAQ runs without special privileges. The only system service it needs is rpcbind,
which typically gets started at boot time of your system. The only modification to
the usual way the rpcbind service is run is that it needs the “-i” flag. The end result
must be that rpcbind is running with that flag, as in

$ ps ax | grep rpcbind

2273 ? Ss 0:00 /sbin/rpcbind -i

5626 pts/0 S+ 0:00 grep --colour=auto rpcbind

$

How this is accomplished varies a lot between Linux distributions. Here are a few
of the more mainstream ones:

Gentoo Create or edit the file /etc/conf.d/rpcbind. Add a line

RPCBIND_OPTS="-i"

Scientific Linux Create or edit the file /etc/sysconfig/rpcbind. Add a line

RPCBIND_ARGS="-i"

Ubuntu Create or edit the file /etc/default/rpcbind. Add a line

OPTIONS="-i"

38

Figure 3: The PSI DRS4 Evaluation Board.

C A Selection of Currently Implemented Readout

Devices

C.1 The PSI DRS4 Evaluation Board

The DRS4 chip is a switched capacitor array capable of sampling at a speed of up
to 5 Gigasamples/s. This device supports sampling rates of 0.7, 1, 2, and 5 GS/s.

The PSI DRS4 evaluation board is one of the workhorse systems in small setups. It
offers 4 waveform digitizing channels with sample rates of up to 5GS/s. Since it is
a USB-based device, it can be run on virtually any Linux system without the need
for special interfaces. Fig. ?? shows pictures of the board.

This is the only device implemented in RCDAQ so far that is capable of being read
out with a Raspberry Pi. The RCDAQ core will work on a Pi just fine, but most
of the other readout devices will not be supported. The DRS4 evaluation board is
the exception. I have personally used the board with a Pi for a long-term cosmic
calibration measurement, where I didn’t want to commit a more powerful PC to
acquire the data.

To start, you need to make sure that your system has all the libraries needed to
interface with the DRS4 evaluation board in the first place. Follow the instructions
on the PSI website what to install and configure. You should be able to run the
drsosc “oscilloscope” application, shown in Fig. ??, on your system before you start
with RCDAQ.

The installation of the plugin follows the recipe outlined in chapter ?? exactly. Go
back to the place where you already installed RCDAQ, in my example from above
/home/purschke/softwarerepo. Then get the software:

wget -O - http://www.phenix.bnl.gov/~purschke/rcdaq/drs4.tar.gz | tar xvz

and you will have a new directory “drs4”. Now go to your build area, /home/purschke/softwarerepo/build
in the example, make a new directory “drs4”, and configure:

$ pwd

/home/purschke/softwarerepo/build

$ mkdir drs4

$ cd drs4

$../../drs4/autogen.sh --prefix=/home/purschke/softwarerepo/install

$ make install

This will install librcdaqplugin_drs.so in your $ONLINE_MAIN/lib area, which

39

Figure 4: A screenshot of the drsosc application. Make sure that you can sucessfully
run this application before you start setting up RCDAQ.

is the plugin that teaches RCDAQ how to read the Evaluation Board.

This is the way how you install every other plugin as well, just replace the name
accordingly.

You can now load the plugin, and see the effect with the daq_status -ll command:

$ rcdaq_client load librcdaqplugin_drs.so

$ daq_status -ll

Stopped

Logging enabled

have a trigger object

Filerule: rcdaq-%08d-%04d.evt

Buffer Sizes: 32832 KB adaptive buffering: 15 s

Web control Port: 8899

Elog: not defined

-- defined Run Types: (none)

List of loaded Plugins:

- DRS Plugin, provides -

- device_drs (evttype, subid, triggerchannel, triggerthreshold[mV], slope[n/p], delay[ns],

speed, start_ch, nch, baseline[mV]) - DRS4 Eval Board

- device_drs_by_serialnumber (evttype, subid, serialnumber, triggerchannel,

triggerthreshold[mV], slope[n/p], delay[ns],

speed, start_ch, nch, baseline[mV]) - DRS4 Eval Board

The only slightly complicated setting is the triggerchannel parameter, which is a
bit-mapped value. You will usually see some value such as 0x21 here. The 5 least
significant bits denote the 4 inputs and the external trigger as triggers for the board.

40

Keep in mind that there are two different triggers here – one is triggering the board
itself, and the other is whether or not this board also provides the system trigger
for RCDAQ (see chapter ?? for the explanation). So bits 0-4 switch on or off the 5
possible sources of board triggers, and bit 5 says if this board generates the system
trigger. So 0x21 – bits 0 and 5 are set – is saying that channel 1 triggers the board,
and the board also makes the system trigger. 0x30 means the system trigger, and
the external trigger triggers the board. Keep in mind that if you choose to not make
the system trigger here, you need another device to do that; you will not get any
events else.

There is another specialty in the standard Linux parameter parsing that you need
to think of and which is shown in this setup example:

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 438 2

Since we need to prevent the parser from interpreting the -150 as options (-1, -5,
-0), you need to tell it to stop the option parsing with the the “double-dash” – --.
This is standard Unix shell behavior, but you need to remember that.

The above line sets the board up to trigger on channel 1, negative trigger with a
-150 mV threshold, an internal delay of 438 ticks (that’s how far we “look back”
in the waveform before the trigger), and 2GS/s speed. The final “2” parameter
happens to mean 2GS/s, but this parameter is enumerated:

parameter speed

0 700 MS/s

1 1 GS/s

2 2 GS/s

3 5 GS/s

By the way: The way I derive the delay and speed parameters is to run drsosc,
adjust everything the way I want it, and then transcribe the parameters from drsosc

to the setup command. If you look at Fig. ??, you will see that I used the same
settings (2 GS/s and a delay of 438 ticks) in the setup example above.

There are two more “hidden” parameters which assume default values when omitted.
The above setup command is equivalent to

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 438 2 0 1024

where the last two parameters mean “start channel” and “number of samples”.
Setting the former to a non-zero value will cut out the early part of the waveform.
I strongly advise against using this parameter, since this will actually slow down
your system as it involves copying the desired part of the waveform to the right
place. You can virtually always accomplish the same by adjusting the delay value
(or delaying the hardware trigger). It is here more out of a sense of completeness.

With the “number of samples” parameter you can cut out the later part of the
waveform. For example, if your signal is confined to the first 250 samples in your
waveform, you can store just those first 250 samples. This will only save storage

41

Figure 5: The CAEN V1742 module.

space and not gain any significant readout speed, since we still need to read the full
waveform and only discard the unwanted tail end. Different from discarding the
front part, the tail end can be discarded without an expensive copy operation.

C.2 The CAEN DRS4 1742V System

The CAEN V1742 module, shown in Fig. ??, is one of the more complex modules
implemented in RCDAQ. At its core, it has 4 DRS4 chips inside, providing 32
primary input channels, plus one “side” channel per chip. Two of those can be used
to digitize the NIM input signal if so desired.

Different from the evaluation board, it supports sampling speeds of 1, 2.5, and
5 GS/s.

The assorted RCDAQ plugin, librcdaqplugin_CAENdrs.so, provides two different
devices to readout the V1742. One, called device_CAENdrs, uses the preconfigured
V1742 as-is, without changing any “non-essential” registers. This device makes
the full configuration space available that the V1742 has to offer. It comes with a
companion utility caen_client, which can be used to adjust any available register
as needed. I said “non-essential” registers, because RCDAQ still sets up the registers
that govern the actual readout the way it needs it; there is not much choice in that
matter. Still, in this way one can set up any conceivable trigger mode, readout
length, sample, rate, and so on, essentially any configuration parameter. Here is a
list of parameters that the caen_client utility can set and read:

$ caen_client status

MaxNumEventsBLT: 1

ExtTriggerInputMode: 3 (ACQ_AND_EXTOUT)

FastTriggerDigitizing: 0 (Disabled)

FastTriggerMode: 0 (Disabled)

OutputSignalMode: 0 (TRIGGER)

Sampling Frequency: 2 (DRS4_1GHz)

RecordLength: 1024 samples

PostTriggerSize: 0

IOLevel() 0 (NIM)

AcquisitionMode 0 (software controlled)

GroupEnableMask 0xf

TriggerPolarity (F - falling edge / R - rising edge) :

R R R R R R R R

R R R R R R R R

42

R R R R R R R R

R R R R R R R R

ChannelDCOffset:

0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00

0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00

0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00

0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00 0x8f00

This pretty much covers the entire configuration space of the device.

The other device you can define is device_CAENdrs_std, which is a no-frills stan-
dard configuration. It can also be adjusted by using device_CAENdrs and caen_client,
but for a novice user it provides a guaranted-to-work way to configure the device.
This device will not obey the caen_client changes but re-set everything to its de-
faults at each begin-run. It takes a NIM signal on the trigger line, and adjusts the
offsets to a range of ±500 mV.

The syntax is

device_CAENdrs_std evttype subid trigger speed delay

where ”trigger” means whether or not the device provides the system trigger.

43

