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Foreword

 The DUNE TDAQ doesn’t exist…

 ... We are eagerly awaiting your ideas on how to design and implement it!
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Outline

 Deep Underground Neutrino Experiment (DUNE) parameters and challenges

 Conceptual design of DUNE data flow

 Front end

 Module level trigger

 Event building

 Event filter

 Predesign prototyping studies: 

 ProtoDUNE-SP

 DUNE DAQ control & monitoring

 Challenges and ideas
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DUNE parameters and challenges
When designing a TDAQ system it’s essential to:

- have a broad understanding of what the experiment wants to achieve;

- understand the detection principles and front-end electronics;

- understand the constraints in which the TDAQ will live.
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DUNE - Physics

http://dunescience.org
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http://dunescience.org/


DUNE - Facility

 Accelerator generating intense neutrino beam

 Near detector measuring neutrinos close to source

 Far detector 1300 km away from source and 1.48 km underground
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 TDAQ: no quick access and no large host lab in the vicinity!



DUNE – The far detector

 4 modules, each 18mx66mx17m (17 kton Lar)

 Detector: 
TPC (slow) + photon detectors (fast)

 TDAQ:
4 independent instances, synchronized to a common 
clock, supporting potentially different detector 
technologies April 11th 2019G. Lehmann Miotto, ISOTDAQ
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DUNE - Signatures

Neutrino beam -> external trigger possible

Very local, rare signature

Very distributed, rare signature April 11th 2019G. Lehmann Miotto, ISOTDAQ
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 TDAQ: active at “all” times!



A short digression on triggering…
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Nomenclature

 Globally triggered

 An “external device” decides that data are interesting

 There is a coherent event ID throughout the readout

 Front-end data are organized into fragments associated to the event ID

 Locally triggered

 A local trigger element fires when data should be readout (e.g. signal above threshold) 

 The trigger is relative to individual or groups of channels, not to the full front-end

 The readout can process incoming data to create fragments corresponding to the trigger

 There is no concept of a global event ID at the readout level

 Continuous readout

 The front-end sends data to the readout at a fixed rate, irrespective of the data content

 Data rate and data size (if there is no zero suppression) are constant in input

 There is no indication for the readout on how to group front-end data into fragments 
corresponding to a physics event
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Use cases for different readouts

 Colliders

 Normally use global trigger: if something interesting has been seen somewhere, 

take all the data corresponding to that bunch crossing

 Large distributed telescopes

 Often use local trigger: readout data for the portions of the detector that have 

seen something

 Very slow detectors

 Sometimes use continuous readout: sample the analogue signals at a fixed rate 

and let the downstream DAQ decide whether there were any interesting signals
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Globally triggered
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Globally triggered: ATLAS@LHC
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An event
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Locally triggered
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Locally triggered: Auger observatory
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Continuous
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Not events, but rather a movie
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By Rick Harrison (license)

https://creativecommons.org/licenses/by-nc-sa/2.0/


… end of digression, back to DUNE
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DUNE Front-End readout

 DUNE mixes continuous readout (TPC) and locally triggered readout 

(Photon detectors)

 TPC sampling rate = 2 MHz

 Photon detectors sampling rate = 150 MHz (but data only when there is a signal)

 TPC wires (single phase technology) = 384000 per cryostat

 384 k channels (12 bit ADC) @ 2 MHz = 9.2 Tb/s (dominates data size)

 Adding all up the TDAQ has to sustain a readout of ~5 TB/s

 Sounds very much like HL-LHC…
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DUNE post-readout data selection

 It is responsibility of the post-readout system to combine data snippets into 

time windows of interesting detector regions

 In DUNE the ”window” can be anything from few ms to ~100s for the supernova 

core collapse

 The data corresponding to a trigger can have a size ranging from << 1 GB to 

~100 TB!

 The rate of events varies widely from few Hz to <<1/month

 The data selection needs to accumulate a view on the activity of the 

detector over several seconds to identify some signatures (SNB)

 The readout needs to have very large buffers to accommodate for the decision 

latency
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Conceptual design of the

DUNE data flow
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DUNE data flow
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Front end – data flow interfaces

 Many similar modular elements (~100 / module)
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Front end  - functional blocks
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DUNE data flow
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Module Level Trigger– data flow 

interfaces

 1 per module
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Module Level Trigger - functional blocks
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DUNE data flow
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Trigger decision

Inhibit

Event builder – data flow interfaces

 One orchestrator, few similar building elements (~10 / module)
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Event builder - functional blocks
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DUNE data flow
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Filter – data flow interfaces

 Several similar elements (~10 / module)
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Filter - functional blocks
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Predesign prototyping studies
The ProtoDUNE Single Phase project
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ProtoDUNE Single Phase 

Largest monolithic single phase LArTPC detector and test 

beam built to date:

● Goal is to validate detector design, construction and 

data acquisition solutions for DUNE’s Single Phase Far 

Detectors

○ 10x10x10 LArTPC

○ 800 tonnes of LAr

○ Located on surface

→ external trigger needed

● Extreme schedule:

○ Project launch: Q1 2016

○ Data taking with beam: Q4 2018

● DAQ approach: 

use ready-to-use solutions

○ minimise development time
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Data flow and volume
 LArTPC → ionisation tracks are collected by the wires 

of the Anode Plane Assemblies (APAs)

 Cold electronics in the detector digitise signals

recorded by wires at 2 MHz

 Warm interface boards (WIBs) then group the 

resulting channels into frames, each of which consists 

of a single 500 ns time slice of the grouped channels 

(128 or 256)

● Output via optical links to DAQ:

○ 2x 9.6 Gb/s or 4x 4.8 Gb/s supported, 

depending on readout solution

○ Continuous timestamped data frame

streams

● Each APA (2560 channels) is read out by 5x WIBs for a 

total payload of about 74 Gb/s
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By M. Brice, CERN
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ProtoDUNE SP TDAQ
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 Readout with large buffers to 
allow exploiting the spill 
structure

 Trigger logics implemented in 
a custom board

 Inputs from beam 
instrumentation, muon 
tagger, photon detectors

 Data compression to reduce 
storage and network needs

 An event is a 3 ms window of 
all data contained in the 
readout corresponding to the 
timestamp of a trigger
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TDAQ Hardware setup
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ProtoDUNE SP TDAQ
 Not a small DUNE TDAQ but an excellent test bench for TDAQ technologies for 

DUNE

 Timing system prototype

 Global time via White Rabbit

 Readout system prototypes

 Buffering in FPGA or server

 Compression scenarios

 On FPGA or SW

 Hit finding

 SW or FW

 Buffering

 RAM + SSD or 
new approaches such as
Intel Optane Memory+QLC
3D NAND storage
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An example: FELIX based readout44

 P-to-p link throughput ✓

 10 links -> host memory over 
1 FELIX card ✓

 Need to switch to PCIe4 or greater to do 20 links

 HW aided data compression using Intel QAT 
technology ✓

FLX-712 card
Mellanox
ConnectX-5

• Full I/O over InfiniBand for ProtoDUNE ✓

- Need much less network I/O for DUNE

- Need longer and high throughput storage 
(but new technologies go in the right direction)

• Joint R&D with ATLAS, CMS, DUNE and Intel on 
DAQ DB 



SW triggering from FELIX readout

 Get the complete stream of raw data

 Reformat WIB frames to

 Expand 12 bit ADCs into 16 bits

 Reorder wires in order to select only collection plane

 Identify each time a wire has a “hit”

 Combine information of hits in order to form track candidates

 Implement a sw based trigger logics

 This work is ongoing now! (next few slides from P. Rodrigues)
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Data Reordering

 1 WIB frame = 464 B => 256 ADCs + headers @ 2 MHz 

 Unpack collection channels with AVX2 code

 Spoiler: this appears to be the biggest CPU consumer















SW triggering next steps

 Generate trigger candidates from hits

 Form a module level trigger

 Carry out data reformatting in FPGA

 Measure benefits

 Move the complete hit finding into FPGA

 Measure benefits and assess any drawbacks
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DUNE DAQ Control & Monitoring
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What is special about DUNE?

 Complexity and size of a large collider experiment

 Uptime <<30%

 Uptime requirement of a “rare events” experiment (gravitational waves, supernovae 
detectors, double beta neutrino decays, etc

 Uptime “100%”

 Accessibility of installation quite limited

 The combination of those three doesn’t work well together…

 The whole system must be conceived and setup in a different way

 Redundancy and fail over mechanisms

 Automated anomaly detection and recovery

 Remote monitoring and control

 The control and monitoring system will have a predominant role for the success of the 
DUNE TDAQ (i.e. the experiment)
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Few guidelines

 Components must be as loosely coupled as possible

 Allow for tolerance to and recovery of local problems without affecting the data 
taking

 Single points of failure (module level trigger, EB orchestrator) must have a 
running backup in standby mode

 Running conditions must be as stable as possible

 Forget about stopping runs and regular full reconfigurations of the system

 Assessment of data quality must be immediate and continuous

 Automated correction for bad data

 System administration (computers, networks, storage) and repair must happen 
on an active system, i.e. be staggered and non intrusive

 All tools need to be thought from the start for remote operators

 Heavily rely on web, but still ensure security and safety
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Design of the Control and Monitoring 

for DUNE

 Do we know how to do it?

 Not really…

 Ideas are mainly on paper and need to be tried out

 System and software engineering skills are essential to get this right
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 How would you go about designing and implementing such a system?



Summary and Outlook

 DUNE is a new giant experiment scheduled to start taking data in 2025

 The TDAQ system is being designed now

 Challenging readout performance

 Very challenging operational requirements

 Predesign prototyping allows us to identify suitable technologies and 

validate ideas

 Advancing well on the main data flow path

 Still embryonic stage for the control and configuration

 If ISOTDAQ awoke your desire of becoming a TDAQ expert 

 DUNE is surely an experiment where you will be able to challenge your skills!
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