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Trying to move …

to here:

from here:
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different issues → different solutions
no magic, unique solution for all cases

Trigger
rate

DAQ
ev. size

Trigger & DAQ in HEP
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medium/large DAQ: constituents



April 6, 2019   6

• Step 1: Increasing the rate
• Step 2: Increasing the sensors
• Step 3: Multiple Front-Ends
• Step 4: Multi-level Trigger
• Step 5: Data-Flow control

aiming to cover the gap in 5 steps …
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Do we really need a trigger ?

back to square one
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Do we really need a trigger ?

not obvious … triggerless DAQ systems do exist

even in high-energy physics, e.g.:

a) LHCb upgrade 40 MHz readout

        → briefly described in Francesca’s final talk

b) DUNE LAr TPC 2 MHz readout

       → Giovanna’s talk on April 11

back to square one
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https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe (1924-1929): 
offline ⟶ online coincidence (logic AND) of 2 signals

Bruno Rossi (Nature, 1930): 
"Method of Registering Multiple Simultaneous Impulses of 

Several Geiger Counters"
→ online coincidence of 3 signals (scalable)!

https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe (1924-1929): 
offline ⟶ online coincidence (logic AND) of 2 signals

Bruno Rossi (Nature, 1930): 
"Method of Registering Multiple Simultaneous Impulses of 

Several Geiger Counters"
→ online coincidence of 3 signals (scalable)!

but triggering may be crucial …

https://en.wikipedia.org/wiki/Coincidence_circuit
https://en.wikipedia.org/wiki/Coincidence_circuit
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https://en.wikipedia.org/wiki/Coincidence_circuit :

“Rossi coincidence circuit was rapidly adopted by experimenters around the 
world. It was the first practical AND circuit, precursor of the AND logic circuits of 

electronic computers”

https://en.wikipedia.org/wiki/Coincidence_circuit :

“Rossi coincidence circuit was rapidly adopted by experimenters around the 
world. It was the first practical AND circuit, precursor of the AND logic circuits of 

electronic computers”

simplest case: 2-signal 
coincidence

simplest case: 2-signal 
coincidence

Rossi's circuit: coincidence of 
signals of 3 Geiger-Muller counters
Rossi's circuit: coincidence of 
signals of 3 Geiger-Muller counters

Geiger-Muller 
counters

Geiger-Muller 
counters

first modern trigger

https://en.wikipedia.org/wiki/Coincidence_circuit
https://en.wikipedia.org/wiki/Coincidence_circuit
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Gokhan’s talk:

      N1= s1·s2·s3 

Veto (anti-
coincidence)

but even simple trigger systems ...
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… pose issues !
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T1
(linear output)

T2

V

… pose issues !

(anti-)coincidence with veto
→ simple, clear !
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T1
(linear output)

T2

V

really doing what you think/need ?

… pose issues !

(anti-)coincidence with veto
→ simple, clear !
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T1
(linear output)

T2

V

output signal may:
a) jitter 
b) fluctuate in duration

(or both)

because of relative timing of T1, T2, V

flawed !

(anti-)coincidence with veto
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MM = Monostable Multivibrator 

       = One-Shot Pulse Generator

much better !

Veto

Trigger

MM

Q
Pulse out

(shaped output)

T2

T1

V

can be a busy signal

(anti-)coincidence with veto
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trigger signal:

         1) should be formed 

                         → pulse with predefined duration

         2) veto/busy should block pulse generation

first lesson(s)
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Many issues:
                         → trigger latency

                         → readout latency

                         → throughput

                         → rate fluctuations (trigger bursts)

                         → throughput fluctuations

                              (correlated noise, …)

step one: increase rate
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Many issues:
                         → trigger latency

                         → readout latency

                         → throughput

                         → rate fluctuations (trigger bursts)

                         → throughput fluctuations

                              (correlated noise, …)

                                           → dead-time

step one: increase rate
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dead time (from Andrea’s introduction)
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dead time  de-randomise

• Processing → bottleneck ? • Buffering → decouple problems

(f· ‏)τ) ~ 1  dead time ~ 50% What the impact ?

(f· ‏)τ) ~ 1  dead time ?
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buffering solve all problems ?

● FIFO 

1) filling at very variable input flow

2) emptying at smoothed output flow

                the Leaky-Bucket problem      

                     

Q: how often may overflow ?
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off-topic: some very basic queueing theory

● N-event buffer ... single queue size N:

P
k
 : % time with k events in ⇒ P

N 
= no space available  dead time

∑P
k
=1 [ k=0..N ]

rate(jj+1) = f·P
j
         (fill at rate f)

rate(j+1j) = ν·P
j+1

     (empty at rate ν ≳ f)

steady state:   ν·P
j+1

= f·P
j
  ⇒   P

j+1
= ρ·P

j 
= ρj+1·P

0
   where ρ = (f/ν)  ≲ 1

for ρ~1   ⇒   P
j
~P

j+1
   ⇒   ∑P

k
~(N+1)·P

0
=1   ⇒   P

0
~P

N
~1/(N+1)

⇒   dead time ~ 1/(N+1)

want  d.t. want  d.t. ≲ ≲  1%    1%   ⇒⇒   N    N ≳≳ 100 100



April 6, 2019   26

off-topic: some very basic queueing theory

● N-event buffer ... single queue size N:

P
k
 : % time with k events in ⇒ P

N 
= no space available  dead time

∑P
k
=1 [ k=0..N ]

rate(jj+1) = f·P
j
         (fill at rate f)

rate(j+1j) = ν·P
j+1

     (empty at rate ν ≳ f)

steady state:   ν·P
j+1

= f·P
j
  ⇒   P

j+1
= ρ·P

j 
= ρj+1·P

0
   where ρ = (f/ν)  ≲ 1

for ρ~1   ⇒   P
j
~P

j+1
   ⇒   ∑P

k
~(N+1)·P

0
=1   ⇒   P

0
~P

N
~1/(N+1)

⇒   dead time ~ 1/(N+1)

want  d.t. want  d.t. ≲ ≲  1%    1%   ⇒⇒   N    N ≳≳ 100 100

Take care: analytic calculation possible for pretty simple systems only

Take care: analytic calculation possible for p
retty simple systems only
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de-randomisation

FIFO

1/f = λ



• We can now attain a DAQ 
efficiency ~100% with:

– τ ~ 1/f(‏ 
– “moderate” buffer size

• One more degree of freedom to 
play with

• Often managed by trigger system 
itself (“complex dead time”)
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complex dead time

1) simple dead time: avoid overlapping (conflicting) readout 
window

2) complex dead time: avoid overflow in front-end buffers 
(protection against trigger bursts) 

e.g. ATLAS: simple leaky-bucket algorithms with 2 parameters:

max X triggers (X = FIFO depth) in any (sliding) time window = (X*readout time)
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FIFO

First-In First-Out memory:

1) independent read/write (sequential) access

2) may be hardware or over RAM

better with Dual-Port RAM
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many other possible 
limits even in a simple 
DAQ

game over ?
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• Sensors limited by physical 
processes such as:

– drift times in gases

– charge collection in Si

• (possibly) choose fast 
processes

• analog FE imposes limits 
as well

• split sensors, each gets 
less rate:
“increase granularity”

 sensor
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• A/D conversion also limited

• Fast ADC

→ # of bits (resolution)

→ power consumption

• Alternatives: 

analog buffers

(e.g. switched capacitor 
arrays)

• You may need integration 
(or sampling) over quite 
some time

 ADC
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an example

• HPGe + NaI Scintillator
High res spectroscopy and beta+ 
decay identification

• minimal trigger with busy logic

• Peak ADC with buffering, zero 
suppression

• VME SBC with local storage

• 3×12 bits data size
+ 32 bit timestamp

• Root for monitor & storage

• Rate limit ~14 kHz

– HPGe signal shaping
for charge collection

– PADC conversion time
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• simple trigger: ~fast

• complex trigger logic: not 
obvious [ even when all in hw ]

• some trigger detectors may be 
far away / slow → latency

• trigger signal is one: all 
information at a single point

– in one step: 
too many cables

– in many steps: 
delays

→ → discrete modules: ~ 5-10 ns delay → tot. latency discrete modules: ~ 5-10 ns delay → tot. latency ≥ 20-30 ns ←≥ 20-30 ns ←

 trigger latency
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R&D on dual-readout calorimetry, setup:
•Crystals

•Scintillating/cherenkov fibers in lead/copper matrices

•Scintillator arrays as shower leakage counters

•Trigger/veto/muon counters

•Precision chamber hodoscope

… always evolving

Acquiring: waveforms, total charge, time information

DREAM (2006): a testbeam case
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DREAM (2006): a testbeam case

a possible 
SPS cycle

duty cycle:

~2 s / 14.4 s

(flat top)

slow extraction
Trigger = ( VTrigger = ( V××TT

11
××TT

22
 | ped ) | ped )  easy !

flat top
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readout system

1 PC  readout of 2 VME crates (via CAEN optical interfaces) 
1 PC  storage

6 x 32 ch xDC.s (x = Q, T : CAEN V792, V862, V775 )

1 x 34 ch (CAEN V1742) 5 Gs/s Digitizer 
(single event: ~34x1024x12bit)

1 x 4 ch Tektronix TDS7254B 20 Gs/s oscilloscope

… few VME I/O & discriminator boards

… all in the control room
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dataflow

1) Pull mode → FE electronics waiting for PC readout
(self-blocking trigger, re-enabled after readout)

2) Block data transfer → DMA (Direct Memory Access)
data moved by specialised hw (not by CPU)

[ Push mode → FE electronics sending data as soon as 
available ]
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DAQ

DAQ logic spill-driven (no “real time”, SLC desktops)

in-spill (slow extraction)
poll trigger signal … if trigger present:

a) (block) read all VME boards
b) format & store on large buffers (FIFO over RAM)
c) re-enable trigger

out-of-spill
a) read scope (in case)  event size fixed at run start
b.1) flush buffers to disk (beam and pedestal files) over network
b.2) monitor data (produce root files)

rate ~ O(1 kHz)
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spill-driven (asynchronous) trigger

TT
11
××TT

22

Trigger = VTrigger = V××TT
11
××TT

22
 | ped | ped

Spill

Veto

from DAQ

Re-enable

Ped Veto

Ped Tr.

Trigger OR
Fast Gate

Busy

to xDC.s

FADC Trigger

(oscilloscope)

to DAQ
Other signals  monitoring/

debugging
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trigger system

a) crystals w/ fast PMT.s
b) no analog buffering

 low-latency trigger

first discrete, then FPGA 
(Xilinx Spartan 3AN evaluation board)
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ADC

storage

N channels

Trigger

Processing

• More granularity at the 
physical level

• Multiple channels
(usually with FIFOs)

• Single, all-HW trigger

• Single processing unit

• Single I/O

step two: increase # of sensors
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ADC

storage

N channels

Trigger

Processing

• common architecture in test 
beams and small 
experiments

• often rate limited by 
(interesting) physics itself, 
not TDAQ system

• or by the sensors

multi-channel, single-PU system
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ADC

storage

N channels

Trigger

Processing

• a single PU can be a limit

– collect / reformat / 
compress data can be 
heavy

– simultaneously writing 
storage

• final storage too:

– VME up to 50MB/s 
→ 1TB in 6h
too many disks in a week!

Laptop SATA disk: 100 MB/s 
USB2: 60 MB/s

bottlenecks: PU and storage
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ADC

storage

N channels

Trigger

Processing Data
Collection

• data transfer data → 
dedicated “Data Collection” 
unit to format, compress and 
store

• more room for smarter 
processing or decreased dead 
time on non-buffered ADCs

 decouple storage from PU
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ADC

storage

N channels

Trigger

Processing

• to reduce data rates
(to avoid storage issues) 

→ non-trivial trigger

• complexity may already hit 
manageability limits for discrete 
logic (latency!)

• integrated, programmable logic 
came to rescue (FPGA)

→ latency may go down to 
O(few ns)

bottlenecks: trigger



April 6, 2019   47

• Radiation processes: 
coherent emission in crystals 
and structured targets, LPM 
suppression...

• 80/120 GeV e- from
CERN SPS slow extraction

• 2s spill every 13.5s

• Needs very high angular resolution
• Long baseline + high-res, low 

material detectors
→ drift Chambers

• 10 kHz limit on beam for radiation 
damage

→ 2-3 kHz physics trigger

another example: NA43/63
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• 30-40 TDC, 6-16 QDC, 0-2 
PADC
(depending on measurement)

• CAMAC bus
1 MB/s, no buffers, no Z.S.

• single PC readout

• NIM logic trigger
(FPGA since 2009)

– pileup rejection

– fixed deadtime

NA43/63
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LEP

• 105 channels

• 22μs crossing rate
–no event overlap

• single interaction

• e.g.: CERN LEP experiments 

• complex detectors, 
moderate trigger rate,
very little background

• little pileup, limited channel 
occupancy

• simpler, slow gas-based 
main trackers

step three: multiple PUs (SBC)
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NOMAD (1995-1998)

veto counters trigger counters

• Search for ν
μ
ν

τ(‏ 
 oscillations at the 

CERN WA neutrino facility (WANF)

• 2.4×2.4 m2 fiducial (beam) area

• Two 4ms spills with 1.8×1013 P.o.T. 
each (ν spills)

• One (2s) slow-extraction spill (μ 
spill)

• 14.4s cycle duration

→ DAQ layout
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WANF - SPS SuperCycle

14.4 s cycle 
length

2 × 4 ms neutrino 
spills (f/s 

extractions)

1 × 2 s muon spill 
(slow extraction)

slow extraction

f/s extractions
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triggering once more ...

menu for NOMADs:

ν-spill triggers μ-spill triggers

veto counters (central shaded area is V8)

~3m

~3m
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triggering  FPGAs at work

MOdular TRIgger for NOmad (MOTRINO):
6 VME boards providing local and global trigger 

generation and propagation
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DAQ

• FASTBUS digitisers:
• 200 (either 64 or 96 channel) xDC boards [ x=Q,P,T ]

• O(≥ 2 us) conversion time, 256 event buffers

• VME readout and processing:
• Motorola 68040 FIC8234 (OS9 real-time system) VME PUs

• 5 for readout + 1 for event building

• Typically
• ~4 kHz of neutrino triggers (~15 evts in each 4ms spill)

• ~30 Hz of muon triggers (~60 evts in each 2s spill)

• 256-events in off-spill calibration cycles (calibration triggers)
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readout sequence

• On-spill on-board buffering

• Off-spill (i.e. off-beam) data transfer and processing

– on spill (or calibration cycle): on-board event buffering 
(no way to read event by event)

– end of spill (or calibration cycle): block transfer to VME

– then event building + storage

• monitoring and control on SunOs and Solaris workstations

 dead time in ν spills: 10% due to digitisation
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• trigger complexity ↔ storage

• single HW trigger not sufficient to reduce rate

• add L2 Trigger

• add HLT

more bottlenecks ?
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LEP

• 105 channels

• 22μs crossing rate
–no event overlap

• single interaction

• L1 ~103 Hz

• L2 ~102 Hz

• L3 ~101 Hz
• 100kB/ev → 1MB/s

Typical Trigger / DAQ structure at LEP
• more complex filters

→ slower

→ applied later in the chain

see Trigger lectures

step four: multi-level trigger
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Upgraded UA2 experiment (1988-1991)
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Upgraded UA2 experiment (1987-1991)

High-lumi pp collisions @ CERN SppS:
√s = 630 GeV
L = 5 x 1030 cm-2 s-1 (one order of magnitude increase)

Goal:
W/Z physics
QCD
top quark and SUSY particle discovery

→ robust theoretical prediction for this

Complex trigger signatures:
em, jet and missing P

T
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Upgraded UA2 experiment (1987-1991)

Three-level trigger selection:
L1 from on detector hardware
L2 over a dedicated processor
L3 over FASTBUS processors (ALEPH event builder)

DAQ readout & monitoring:
CAMAC & FASTBUS → VAX/VMS platforms
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→ theorist were right but ...



April 6, 2019   62

Upgraded UA2 experiment (1987-1991)
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Upgraded UA2 experiment (1987-1991)

Three-level trigger selection:
L1 from on detector hardware
L2 over a dedicated processor
L3 over FASTBUS processors (ALEPH event builder)

DAQ readout & monitoring:
CAMAC & FASTBUS → VAX/VMS platforms

→ theorist were right but …
unfortunately nature was wrong!

Nevertheless many new/better measurements and 
observations of SM processes
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→ Merge L2 and L3 into a single HLT farm

– preserve Region of Interest but dilute the farm separation and fragmentation

– increase flexibly, computing power efficiency

ATLAS (from run-1 to run-2)
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Typical (ATLAS) numbers:

• L1 : O(1 μs in real-time)   let say = 2.5 μs

• L2 : O(10 ms)  let say = 40 ms

• L3(HLT) : O(s)  let say = 1 s

Q: do the 3 numbers mean the same thing ?

off-topic: event-selection latency
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real time: system must respond within some fixed delay

→ Latency = Max Latency
→ over fluctuations bad, will create dead time

non-real-time: system responds as soon as it’s available

→ Latency = Mean Latency
→ over fluctuations fine, shouldn’t create dead time

latency and real-time

real time o.s. :
very stable time delay in responding to events

standard unix kernels are not real time:
     a system call can in principle take any time
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Low-latency patch 

(Ubuntu Studio): 

Interruptible linux kernel
RTAI: linux kernel runs as a 
higher priority application

off-topic: real-time linux
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• Buffers are not the <final 
solution> they can overflow due 
to:

– bursts

– unusual event sizes

• Discard

– local, or

– “backpressure”, 
tells lower levels to discard

Who controls the flow?
FE (push) or EB (pull)

step five: dataflow control
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• DAΦΝΕ e+e- collider in Frascati

• CP violation parameters in the 
Kaon system

• “factory”: rare events in a high-
rate beam

• 105 channels

• 2.7 ns crossing rate
– rarely event overlap

– “double hit” rejection

• high rate of small events

• L1 ~104 Hz
– 2μs fixed dead time

• HLT ~104 Hz
– ~COTS, cosmic rejection 

only

• 5 kB/ev → 50 MB/s [design]

a push example: KLOE
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• deterministic FDDI network

• not real need for buffering 
at FE

• push architecture
vs pull used in ATLAS
see DAQ Software lecture

• try EB load redistribution 
before resorting to 
backpressure

EB

Which LHC experiment has a somewhat 
similar dataflow architecture ?

KLOE
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The LHCb Data Acquisition during LHC Run 1
CHEP 2013

more info in “TDAQ for the LHC experiments”

LHCb: network is dataflow
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On some long term, all experiments looking forward to 
significant increase in L1 trigger rate and bandwidth. 
ALICE and LHCb will pioneer this path during LS2

On some long term, all experiments looking forward to 
significant increase in L1 trigger rate and bandwidth. 
ALICE and LHCb will pioneer this path during LS2

DAQ@LHC Workshop

• First level trigger for Pb-Pb 
interactions 500 Hz → 50 kHz

• 22 MB/event

– 1 TB/s readout → 500 
PB/month

• Data volume reduction

– on-line full reconstruction

– discard raw-data

• Combined DAQ/HLT/offline farm

– COTS, FPGA and GPGPU

•  1 MHz → 40 MHz readout and 
event building → trigger-less

– trigger support for staged 
computing power deployment

• 100 kB/event

– on-detector zero suppression 
→ rad-hard FPGA

– 4 TB/s event-building

looking forward to LS2 and beyond

http://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=217480
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• Integrate synchronous,
low latency in front end

– limitations do not disappear, 
but decouple (factorise)

– all-HW implementation

– isolated in replaceable(?) 
components 

• Use networks as soon as possible

• Deal with dataflow instead of 
latency

• Use COTS network and 
processing

• Use “network” design already 
at small scale

– easily get high performance 
with commercial components

trends
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take care, lot of issues not covered:

Hw configuration

Sw configuration

Hw control & recovery

Sw control & recovery

Monitoring

…
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Thank you for your patience …
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Lost & Found
(off-topics)
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Appendix A: Cables and Transmission Lines

Spoken about signals, amp.s, digitisers, … but ...

… almost nothing about how signals are transmitted over long 
distances. Is there any issue ?

Q(1): what is a cable (for a single signal) ?

a couple of ideal conductors (R=C=L=0) ?

Q(2): which speed can it reach ?

Q(3): what’s its impedance ?

Q(4): what does it to your signal ?

Ok the full line must be properly matched:

Z(out) = Z(cable) = Z(in)                           That’s all ?
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Cables and Transmission Lines

Lossless transmission line:

Lossy transmission line:
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Cable element (dz):

R depends on the frequency (skin effect)
G should be negligible

                           Z = (L/C)½

                          vp  = (LC)-½ = (με)-½

L≈
μ

2π
ln  b

a     [H/m ]

 F/m   
)/ln(

2

ab
C




Cables
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Equation for standing waves:

solution:

R usually dominated by the skin effect:
                                    R(ω)) = r*D/(4*δ)

r = resistance per unit length
D = diameter internal conductor
δ = skin depth ~ 1/√ω

∂
2V
∂ z2 =LC

∂
2V
∂ t 2  LG+RC 

∂V
∂ t

+RGV

d 2 V
dz2 =R+iωLωLL G+iωLωLC V=γ2 V

γ=α+iωLk=  R+iωLωLL G+iωLωLC 

Cables
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Neglecting the transconductance G:

50-Ohm fast (v = 4 ns/m) CERN-store cables:

                       04.61.11.F - COAXIAL CABLE 50 OHM - TYPE C-50-6-1
                       04.61.11.H - COAXIAL CABLE 50 OHM - LOW LOSS - TYPE C-50-11-1

        f(-3db, 40 m, cable C-50-6-1) ~ 120 MHz
        f(-3dB, 40 m, low loss cable) ~ 640 MHz

α= R ωL / 2 Z 0 ~cωL
k=ωL RC=ωL/  c

V  z,t =V 1 exp −αz  exp [iωL ωLt−kz  ]

Cable Losses
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Time parameter:

selbac ssol wol( 6-E41 ,)1-6-05-C( 6-E*23 ~ zμz ~ 32*E-6 (C-50-6-1), 14E-6 (low loss cables)(‏         

*** Take care: would like τ0 << τ(signal)

α~  f
0= z 2 /

0~320ns C−50−6−1
0~60 ns low losscables

Signal Distortions
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for α ~a  f
τ0=a z 2/ π

Digital Pulse Distortions
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~1ns analog-signal response for 

BW ~ 300, 150, 75, ... MHz

signal in

signal out

Bandwidth Effects – Analog Signals



April 6, 2019   85

Appendix B: backtrace

Segfaulting ? Have a look at backtrace:

https://www.gnu.org/software/libc/manual/html_node/Backtraces.html

BACKTRACE(3)                               Linux Programmer's Manual                              
BACKTRACE(3)

NAME

       backtrace, backtrace_symbols, backtrace_symbols_fd - support for 
application self-debugging

SYNOPSIS

       #include <execinfo.h>

       int backtrace(void **buffer, int size);

       char **backtrace_symbols(void *const *buffer, int size);

       void backtrace_symbols_fd(void *const *buffer, int size, int fd);

https://www.gnu.org/software/libc/manual/html_node/Backtraces.html
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HowTo
1) file “my_segf.cxx” : install a signal handler to print the backtrace

#include <stdio.h>
#include <execinfo.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>

void handler(int sig) {
  void *array[10];
  size_t size;

  // get void*'s for all entries on the stack
  size = backtrace(array, 10);

  // print out all the frames to stderr
  fprintf(stderr, "Error: signal %d:\n", sig);
  backtrace_symbols_fd(array, size, STDERR_FILENO);
  exit(1);
}

void baz() {
 int *foo = (int*)-1; // make a bad pointer
 printf("%d\n", *foo);       // causes segfault
}

void bar() { baz(); }
void foo() { bar(); }

int main(int argc, char **argv) {
  signal(SIGSEGV, handler);   // install our handler
  foo(); // this will call foo, bar, and baz.  Baz segfaults.
}
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2) compile with -g debug flag on:

g++ -g -rdynamic my_segf.cxx -o 
my_segf

3) get the crash:

[roberto@bob-laptop ~]$ ./my_segf 
Error: signal 11:
./my_segf(_Z7handleri+0x1c)[0x400a52]
/lib64/libc.so.6(+0x347e0)[0x7fa55f1c07e0]
./my_segf(_Z3bazv+0x14)[0x400aab]
./my_segf(_Z3barv+0x9)[0x400aca]
./my_segf(_Z3foov+0x9)[0x400ad6]
./my_segf(main+0x23)[0x400afc]
/lib64/libc.so.6(__libc_start_main+0xf1)
[0x7fa55f1ac731]
./my_segf(_start+0x29)[0x400969]

handler

libc

my crash

4) crash is at (_Z3bazv+0x14) ... the function name is “_Z3bazv” (c++ function 
name mangling).  How to get it ?

5) Demangle it thanks to:  http://
demangler.com/6) Take the Answer: baz()  → crash is at (baz+0x14)
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7) crash is at (baz+0x14) ... open the debugger:    gdb my_segf

(gdb) info address baz
Symbol "baz()" is a function at address 0x400a55.

8) so crash is at address (0x499a55+0x14) … then:

(gdb) info line *(0x400a55+0x14)
Line 24 of "my_segf.cxx" starts at address 0x400a65 <baz()+16>
   and ends at 0x400a7c <baz()+39>.

9) got it ! That’s not yet the reason but ...
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Appendix C: Profiling

Take care: optimize your code – first of all - where it 
really needs. To get it, you may use of profiling.

for C/C++ code, look (for example) at this gprof tutorial:

          http://www.thegeekstuff.com/2012/08/gprof-tutorial/

Very simple, at least for standalone code ...               

http://www.thegeekstuff.com/2012/08/gprof-tutorial/
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