THE INTERNATIONAL DESIGN STUDY FOR THE NEUTRING FACTORY

K. Long, 14 June, 2010

Steps towards the Neutrino Factory

Imperial College London

Acknowledgements:

- Many thanks to those who provided information or material:
 - And in particular the International Design Study for the Neutrino Factory (the IDS-NF) collaboration and the EUROnu collaboration

Motivation; timescale and risk

IDS-NF Neutrino Factory baseline

Status of the study

Accelerator facility

- Neutrino detectors

Opportunities and conclusions

Steps towards the **Neutrino Factory:**

Timescale and risk [of incremental approach]

Discovery of non-leading oscillations:

- Present, and near future, experiments that seek to measure θ_{13} :
 - Reactor: D-Chooz; Daya Bay; Reno
 - Long-baseline: T2K, NOvA

'Sensitivity plateau' of ~10⁻² reached around 2016

Potential/risk of incremental upgrade:

Power upgrade to increase performance of T2K and NOvA:

- Upgraded facilities:
 - Some sensitivity to MH and δ:
 - Over 25—30% of (δ)parameter space:
 - So long as $\sin^2 2\theta_{13}$ larger than ~10⁻²
 - 70—75% of (δ)parameter space uncovered ($\sin^2 2\theta_{13} > ~10^{-2}$)
 - No δ-sensitivity for $\sin^2 2\theta_{13}$ smaller than ~10⁻²
- Opportunity:
 - Establish facility with discovery potential over close to the full parameter space and down to very small $\sin^2 2\theta_{13}$:
 - With, in addition, the best possible:
 - Precision on the SvM parameters
 - Flexibility in the study of physics beyond the SvM

Risk avoidance: the Neutrino Factory:

- Optimise discovery potential for CP and MH
 - -Requirements:
 - Large v_e (v̄_e) flux
 - Detailed study of sub-leading effects

Stored $\mu^- \rightarrow e^- v_\mu v_e$		
Disappearance	Appearance	
$\stackrel{-}{\nu_e} \rightarrow \stackrel{-}{\nu_e} \rightarrow e^+$	$\stackrel{-}{v_e} \rightarrow \stackrel{-}{v_{\mu}} \rightarrow \mu^+$	
	$\stackrel{-}{\nu}_{e} \rightarrow \stackrel{-}{\nu}_{ au} \rightarrow au^{+}$	
$\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$	$ u_{\mu} \rightarrow \nu_{e} \rightarrow e^{-} $	
	$\nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-}$	

All channels potentially available at the Neutrino Factory

Risk avoidance: the Neutrino Factory:

- Optimise discovery potential for CP and MH
 - -Requirements:
 - Large v_e (v̄_e) flux
 - Detailed study of sub-leading effects

- (Large) high-energy $v_e(\overline{v}_e)$ flux
 - Optimise event rate at fixed L/E

Rate \propto flux \times cross section

$$\circ \Phi \propto \frac{1}{\gamma^2} \times \frac{1}{L^2} \propto \frac{E_{\mu}^2}{L^2}$$

$$\circ \sigma \propto E_{\nu}$$
 [for $E_{\nu} > 10$ GeV]

 \circ For μ decay: E_{ν} scales with E_{μ}

$$\therefore \text{ Rate } \propto \frac{E_{\mu}^3}{L^2}$$

i.e. for fixed
$$\left[\frac{L}{E_{\mu}}\right]^{-1}$$
; Rate $\propto E_{\mu}$

Risk avoidance: the Neutrino Factory:

- Optimise discovery potential for CP and MH
 - -Requirements:
 - Large $v_e (\overline{v}_e)$ flux
 - Detailed study of sub-leading effects

- (Large) high-energy $v_e(\overline{v}_e)$ flux
 - Optimise event rate at fixed *L/E*
 - Optimise MH sensitivity
 - Optimise CP sensitivity

Posters: J. Kopp: IDS-NF overview

W. Winter: IDS-NF physics

Neutrino Factory:

IDS-NF baseline; performance and optimisation

Huber, Lindner, Rolinec, Winter, Phys.Rev.D74:073003,2006

Neutrino Factory: optimisation:

- Magic baseline (7500 km) good degeneracy solver
- Best sensitivity to CP requires baseline ~4000 km
- Stored muon energy: 25 GeV

Neutrino Factory: optimisation:

- Two detectors:
 - Compare performance of 50 kT detector at magic baseline with two 25 kT detectors

Kopp, Ota, Winter, Phys.Rev.D78:053007,2008.

- Preferred combination:
 - 2000-5000 km; good sensitivity to CP violation
 - 7000-8000 km; mass hierarchy, θ_{13} , degeneracy resolution

IDS-NF baseline: accelerator:

A. Cervera, A. Laing, J. Martín-Albo, F.J.P. Soler

IDS-NF baseline: detector:

Baseline:

- Magnetised Iron Neutrino Detector (MIND):
 - Large (100 kTonne) mass
 - Readily magnetised
 - New analysis gives threshold at 1—2GeV

Alternatives:

- Totally Active Scintillator
 Detector (TASD);
 Liquid Argon (LAr):
 - Potential for 'direct' sensitivity to ve and ντ
 - Issues:
 - Magnetisation of large volume
 - Cost of large mass of TASD
 - R&D required for large mass LAr

IDS-NF baseline: performance:

IDS-NF baseline performance:

IDS-NF baseline: performance:

- Physics beyond the SvM:
 - Example: on-standard interactions
 - Excellent performance for $E_{\mu} = 25 \text{ GeV (IDS-NF baseline)}$

IDS-NF baseline: precision; large θ_{13} :

- Precision measurement of mixing parameters:
 - $-\theta_{13}$ measurement at < 1° level and θ_{23} at ~2° level
 - δ measurement at 10—15% level
 - Requires understanding of v_{τ} component of signal

IDS-NF optimisation; large θ_{13} :

- $\theta_{13} > 2 \times 10^{-3}$: 'next-generation' options comparable
 - IDS-NF baseline optimised for discovery reach
 - Near detector required to measure:
 - Flux
 - Neutrino cross sections
 - Charm production

Tang, Winter Phys.Rev.D81:033005,2010

- Yields sensitivity to v_{τ} appearance at near detector

	Without ν_{τ} ND5	With ν_{τ} ND5	
$ \epsilon^s_{e au} $	0.004	0.0007	
$ \epsilon^s_{\mu au} $	0.4	0.0006	
$ \epsilon_{e au}^m $	0.004	0.004	
$ \epsilon^m_{\mu au} $	0.02	0.02	
With correlation $\epsilon_{\mu\tau}^s = -(\epsilon_{\mu\tau}^m)^*$			
$- \epsilon^s_{\mu au} , \epsilon^m_{\mu au} $	0.003	0.0006	

- Near detector will:
 - Significantly improve performance for $\theta_{13} > 2 \times 10^{-3}$;
 - Significantly improve sensitivity to NSI

Option for large θ_{13} ; Low Energy NF:

- Take advantage of large oscillation amplitude:
 - Lower muon energy to 4—8
 GeV
 - Matched to baselines in the range 1500—3000 km
 - Reduced cost of muon acceleration
 - Possibly part of a staging scenario
 - Improved detector performance required:
 - Must reconstruct oscillation at low E_{μ} :
 - → Low energy threshold and high energy resolution
 - Requires magnetised TASD (or Liquid argon)

Low Energy Neutrino Factory; sensitivity:

Poster: J. Pasternak: IDS-NF accelerator facility

Neutrino Factory:

Accelerator facility:

Parameter	Value	Comment
Beam power	4 MW	Production rate
Beam energy	5-15 GeV	Optimum pion production
Bunch length	$2 \pm 1 \text{ ns}$	Pion/muon capture

Proton driver:

IPAC10: THPD074,
MOPEC049,
WEPE098

- Challenges:
 - High power; short proton bunch length at ~10 GeV
- IDS-NF approach:
 - Consider two 'generic' options:
 - LINAC:
 - Possible development option for SPL (CERN) or Project-X (FNAL)
 - Requires accumulator/compressor rings
 - Rings:
 - Development option for J-PARC or RAL or possible 'green-field' option
 - Requires bunch compression

Parameter	Value	Comment
Jet velocity	20 m/s	Reformation of jet
Field at i/p	20 T	Pion collection
Field at exit of capture	1.75 T	Pion focusing

Target/capture:

IPAC10: WEPE101, THPEC092

- Baseline:
 - Mercury jet, tapered solenoid for pion capture:
 - 20 T tapering to 1.75 T in ~13 m
- Alternatives: [mitigation of technical risk]
 - Tungsten bars; tungsten-powder jet

Baseline target: proof of principal: MERIT:

IPAC10: WEPE078

- 'Disruption length': 28 cm
- 'Refill' time: 14 ms
 - Corresponds to 70 Hz
- Hence:
 - Demonstrated operation at:
 - 115 kJ × 70 Hz = 8 MW

- 20 m/s liquid Hg jet in 15 T B field
- Exposed to CERN PS proton beam:
 - Beam pulse energy = 115 kJ
 - Reached 30 tera protons at 24 GeV

IPAC10: THPEC089, THPEC091

Alternatives: solid and powder jet:

- Solid target:
 - Lifetime limitation from beaminduced shock:
 - Investigated using rapid risetime (kicker) power supply and thin wire
 - Measurements imply:
 - 2 cm diameter tungsten rod will survive > 10 yrs
 - Proceeding to measure vibration modes to determine stress and verify models

- Tungsten-powder jet:
 - (Jet) advantage:
 - Avoids issue of shock
 - (Solid) advantage:
 - Avoids issue of Hg handling
 - 'Bench-test' system under evaluation
 - Proof of principal system under consideration

Parameter	Value	Comment
E-spread after P.R.	10%	Subsequent accel.
Freq. after P.R.	201.25 MHz	
Emittance at exit	7.4 mm rad	Subsequent accel.

Muon front-end:

IPAC10: WEPE050, WEPE051, WEPE068, WEPE074, WEPE076

lonisation cooling:

lonisation cooling

$$\frac{d\varepsilon_n}{dX} = \frac{-\varepsilon_n}{\beta^2 E} \left\langle \frac{dE}{dX} \right\rangle + \frac{\beta_t \left(0.014 \text{ GeV} \right)^2}{2\beta^3 E m_\mu X_0}$$

- MICE: proof of principle:
 - Design, build, commission and operate a realistic section of cooling channel
 - Measure its performance in a variety of modes of operation and beam conditions
 - Results will allow Neutrino Factory complex to be optimised

Front-end R&D:

- MuCOOL: high-gradient, copper, cavities in magnetic field:
 - Study of breakdown in 805
 MHz and 201 MHz cavities in magnetic field
 - Mitigation of breakdown using high-pressure (H2) gas
 - Operation of cooling channel elements with intense (1013 ppp) proton beam from FNAL booster

IPAC10: WEPE054

	E _{fin} (GeV)	Comment
Pre-accel. Linac	0.9	Change in γ
RLAI	3.6	Switch-yard congestion
RLA II	12.6	Switch-yard congestion
FFAG	25.0	Large acceptance, use of RF

Muon acceleration:

Rapid acceleration!

- Linac/RLAs:
 - Superconducting linac:
 - Large acceptance;
 - Rapidly increase γ to increase effective lifetime
 - Recirculating linacs (RLAs):
 - Continue rapid acceleration
 - More cost-effective use of RF

- Fixed Field Alternating Gradient (FFAG) accelerator:
 - Large aperture magnets with fixed field:
 - Continued rapid acceleration
 - Improved cost-efficiency in use of RF

MOPE085,WEPE057

- Injection/extraction challenging:
 - Development of appropriate schemes in progress

IPAC10: WEPE060, THPEB035,THPE033, THPD093

Muon acceleration: proof of principal:

- EMMA; almost complete at Daresbury Lab.
 - Electron Model of Muon Acceleration
 - Aka:
 - Electron Model of Many Applications

- 6 of 7 sectors of EMMA have been installed;
- Commissioning of injector system and of associated diagnostics has started!
- Expect very soon
 - Installation of 7th sector; and
 - Start of commissioning of sectors 1—4

Poster: R. Tsenov: IDS-NF neutrino detectors

Neutrino Factory:

Neutrino Detectors:

MIND configuration, simulation and reconstruction:

- Iron / scintillator:
 - 4 cm / 1 cm
 - Re-optimisation in progress (see later)
 - -B=1 T; dipole
 - To be revised in favour of toroid (see later)

- Simulation:
 - Consider DIS (Lepto) and simulate MIND with Geant3
 - Analysis extended to include: QE, Resonance and coherent processes (see later)
- Analysis of golden channel: wrong sign muons from $v_e \rightarrow v_{\mu}$
 - Digitisation to response of MIND in 'voxels'
 - Reconstruction:
 - Kalman filter if sufficiently long 'muon stub'
 - 'Cellular automaton' otherwise
 - Hadronic reconstruction:
 - Parameterisation:

$$\frac{\delta E_{had}}{E_{had}} = \frac{0.55}{\sqrt{E_{had}}} \oplus 0.03$$

A. Cervera, A. Laing, J. Martín-Albo, F.J.P. Soler; 1004.0358v1

$$\delta\theta_{had} = \frac{10.4}{\sqrt{E_{had}}} \oplus \frac{10.1}{E_{had}}$$

MIND: performance:

Neutrino Factory with baseline MIND:

- Gives CPV discovery reach to $\theta_{13} \sim 2 \times 10^{-5}$
- Out-performs alternative options
- Improvements:
 - In hand:
 - Re-optimisation of sampling fraction:
 - Fe:Scint = 3 cm : 2 cm
 - Full simulation of physics processes
 - NUANCE
 - Full, Geant4, simulation of MIND
 - Hadron shower

Improves threshold by factor ~2

- To be implemented:
 - Toroidal magnet

MIND: performance:

Neutrino Factory:

Opportunity and conclusions:

Neutrino Factory: footprint:

Conclusions:

- The Neutrino Factory, the 'facility of choice':
 - Best discovery reach
 - Best precision:
 - But need to define agreed figure of merit
 - Best sensitivity to non-standard interactions
- The IDS-NF baseline established and, so far, robust
 - Alternatives to the baseline, addressing particular issues (e.g., Low Energy Neutrino Factory), are under discussion
- The IDS-NF collaboration:
 - Energetic and ambitious, working towards IDR 2010/11 and RDR 2012/13:
 - EUROnu: encompasses and coordinates European contributions
- Scientific imperative:
 - Make the Neutrino Factory an option for the field!