The LENS Experiment: Spectroscopy of Low Energy Solar Neutrinos

R. S. Raghavan Virginia Tech

Neutrino 2010- Athens Greece

June 19, 20010

Raghavan-Nu2010

LENS—Low Energy Neutrino Spectroscopy

Tagged v –capture reaction in Indium-115

$$\nu_{e} + \stackrel{115}{\longrightarrow} In \xrightarrow{} e^{-} + \stackrel{115}{\longrightarrow} Sn^{*} \xrightarrow{} 2\gamma + \stackrel{115}{\longrightarrow} Sn$$

LENS is the only CC detector developed to date for low energy solar neutrinos

R&D Funded now by NSF (2 awards 2007,2008, 2010-2013)

LENS Collaboration (2004-

R. L. Hahn, L. M. Hu, M. Yeh
Rex Tayloe
A. Champagne;
H. Back Albert Young
J. Blackmon, L. Linhardt, B. Moazen,
L. C. Rascoe
Z. Chang
M. Pitt, M.Joyce, J. Link, S. Manecki, L. Papp,
R.S. Raghavan, D. Rountree, R.B. Vogelaar

Recent Collaborators (with Appreciation and Thanks) (until 2004) LENS-R&D: Italy, France, Germany, Russia...

Raghavan-Nu2010

LENS Goal: Low Energy Solar v-Spectrum

Neutrino Signature !

(cf Borexino event –no tag →Radiopurity <10⁻¹³ g/g (Cf. Borexino 10⁻¹⁷ g/g) •ALL Bgd: MEASURED Live with Signal

No uncertainty of bgd

- **TECHNOLOGY: Basic Tools for Background Strategy**
- *Granularity*: B varies as m/M; S/N varies as 1/m M=mass of In in cell: M total mass of Indium

Energy resolution: overlap of residual background features on solar signal

Technology and Bgd Control < Towards Hi Precision fluxes >

• Hi Quality InLS

- Granular Detector Design
- Background Analysis Insights

• \rightarrow In decay bgd suppressed \rightarrow S/N ~3 for first time

	Status
Design of Detector	Cubic Lattice Chamber
InLS: In content Light attenutation L(1/e) Signal Eff Pe/MeV	>8% >8m 900
Indium Mass(1900 pp/5y)	10 ton
Total Mass	125 ton
PMT's	13,300
Neutrino detection eff.	64%

Indium Liquid Scintillator Status

Milestones unprecedented in metal LS technology

LS technique relevant to many other applications

PC based InLS

- Indium concentration ~8%wt (higher may be viable)
- 2. Scintillation signal efficiency (working value): 8000 hv/MeV
- 3. Transparency at 430 nm: L(1/e) (working value): 8m
- 4. Chemical and Optical Stability: at least 1 year
- 5. InLS Chemistry Robust

New = LAB based InLS

Basic Bell Labs Patents 2001, 2004, Chandross, Raghavan

New Detector Technology –hi event position localization The Scintillation Lattice Chamber

Light channeling in 3-d totally Demonstration Acrylic Model Internally reflecting cubic Lattice GEANT4 sim. of concept.

Test of double foil mirror in liq. @~2bar

3D Digital Localizability of Hit within one cube

- \rightarrow ~75mm precision vs. 600 mm (±2 σ) by TOF in longitudinal modules
- \rightarrow x8 less vertex vol. \rightarrow x8 less random coinc. \rightarrow Big effect on Background
- \rightarrow Hit localizability independent of event energy

Raghavan—Nu2010

Indium β⁻-Background Discrimination

Background rejection steps for pp detection (other neutrinos detected free of Indium background):

- A. Time/space coincidence in the same cell required for trigger;
- B. Tag requires at least three 'hits';
- C. Narrow energy cut;
- D. A tag topology: multi- β vs. Compton shower;

Chassification of events according to hit multiplicity;

**Cut parameters optimized for each event class -→major factor in improved efficiency;

Results of GEANT4 Monte Carlo simulation (cell size = 7.5cm, final result S/N=3; Bgd suppression 6x10^11)	Signal (pp) y ⁻¹ t ln) ⁻¹	Bgd (In) y ⁻¹ (t In) ⁻¹		Reduction by ~3 [.] 10 ⁷
RAW rate	62.5	79 x 10 ¹¹		through time/space
A. Tag in Space/Time delayed coincidence with prompt event in vertex	50	2.76 x 10⁵		coincidence
B. + ≥3 Hits in tag shower	46	2.96 x 10⁴		
C. +Tag Energy = 614 keV	44	306	aia	
D. +Tag topology	40	13 ± 0.6	Щ.	Tech

Evolution of LENS Granular Designs

Design Idea

Cell Resolution

1D Longitudinal Array (1998)

M/m = 2x10^4 m = 350g In (M = 10 t)

3D Scintillation Lattice Chamber: (1983, 2005)

M/m = 2.5x10^5) m =35 g (M = 10 t)

Fluorescence Conv. Chamber: (1980 RSR-Nu81

M/m = 5x10^8

AIM NOW: Just gain $x10 \rightarrow M/m \sim 10^{6}$

Nu2010

LENS Nu Flu Chamber Detail (conceptual dimensions—not to scale)

New advantages of Flu Conv

- Decoupling of light production and light transport to detectors
 - ---In Scintillator need not be optimised to att. Length—only light
 - ---Frees us to use much higher loading ~15-30% without fear of strong attenuation due to In
 - --- Removes restriction to liquids—gels, even powders possible
- •Light transport free of In—longer paths possible and optimized separately ---Use bars 2cmx3mmx5m
- The signal luminous area << detector surface area
 →Photocoverage area typically x100 smaller than for lattice design
 →Cost and background reduced significantly
- \rightarrow Brings APD into the picture without breaking the bank

•Geometry of bars makes design integration of buffer by •the same detection system

pe/MeV	S/t In/year	Lattice: m = 34g/cell N = [Bgd (E) +Bgd (T)]/t In Y (see Appendix)	<mark>S/N</mark>	NuFLU: m=3g/cell N=Bgd(E)+Bg d(T)/t In/y	<mark>S/N</mark>
<mark>200</mark>	40	275+8 =283	<mark>0.14</mark>	25+0.75=26	<mark>1.5</mark>
<mark>300</mark>	"	83+8=91	<mark>0.44</mark>	7.5+0.75=8.3	<mark>4.8</mark>
<mark>400</mark>	"	19+8=27	<mark>1.5</mark>	1.7+0.75=2.2 5	<mark>18</mark>
<mark>900</mark>	"	0 + 8=8	<mark>5</mark>	0+0.75=0.75	<mark>53</mark>

Raghavan-Nu2010

Final Test detector for LENS

Goals for MINILENS 8kg In; 125 liter InLS

Test detector technology

 → Medium Scale InLS production
 → Design and construction
 Direct blue print for full scale LENS

MINILENS

Raghavan—Nu2010

The Kimballton Underground Facility

Raghavan-Nu2010

Science from LENS—Hi precision of complete low energy spectrum (Background free) Nu rates (pp→ 3-4%)

- 1. Neutrino Physics Energy dependence of P_{ee}
 - → Oscillation Phenomenology MSW→Vac Osc— Surprise Scenarios
- 2. Solar Luminosity vs Photon Luminosity—Final check of the *Energy Source* of the sun via neutrinos--Astrophysics/Neutrino physics
- 3. Gamow Energy of pp fusion—Energy production in sun
- 4. Use of LENS technology: "LENS-Sterile" Physics beyond Std model—Sterile Neutrinos from LENS+Cr (or Ar) Source

LENS and Borexino

measure the same flux with two different reactions, one based on CC (v_e only) and the other on NC-sensitive v_e and v_(µ/T). The capture cross section for the In v_e capture can be written as:

 $\boldsymbol{\sigma}_{\text{c}} = (\boldsymbol{R}_L/\boldsymbol{R}_B) \; [[\boldsymbol{p}_{ee}\boldsymbol{\sigma}_{\text{e}} + (1\text{-}\boldsymbol{p}_{ee}) \; \boldsymbol{\sigma}_{\mu,\tau}] / \; \boldsymbol{p}_{ee}]$

in Borexino and LENS, pee is the v_e survival probability and σ_e and $\sigma_{\mu,\tau}$ are the well-known scattering cross sections for v(e, μ and τ)

Independent access to σ_c via Cr source mesurement

Fig. 3 Effect of revised solar abundances on helioseismology results [ref. 13]

Table 2. Predicted Fluxes for low (col 2) and high (col 3) abundances [ref. 14]. The measured ⁸B flux from SNO salt phase is 5.54 vs. 4.72 (BPS 08, AGS)

Source	BPS08(GS)	BPS08(AGS)	Difference
pp	$5.97(1 \pm 0.006)$	$6.04(1 \pm 0.005)$	1.2%
pep	$1.41 (1\pm 0.011)$	$1.45(1\pm 0.010)$	2.8%
hep	$7.90(1 \pm 0.15)$	$8.22(1 \pm 0.15)$	4.1%
⁷ Be	$5.07(1 \pm 0.06)$	$4.55(1 \pm 0.06)$	10%
⁸ B	$5.94((1 \pm 0.11)$	$4.72(1 \pm 0.11)$	21%
¹³ N	$2.88(1 \pm 0.15)$	$1.89(1 \ _{-0.13}^{+0.14})$	34%
¹⁵ O	$2.15(1 \ _{-0.16}^{+0.17})$	$1.34(1 \ _{-0.15}^{+0.16})$	31%
¹⁷ F	$5.82(1 \ ^{+0.19}_{-0.17})$	$3.25(1 \ ^{+0.16}_{-0.15})$	44%
Cl	$8.46^{+0.87}_{-0.88}$	$6.86\substack{+0.69\\-0.70}$	
Ga	$127.9^{+8.1}_{-8.2}$	$120.5^{+6.9}_{-7.1}$	

Energy of the Sun via Neutrino vs. photon Possible because we measure 99.5% of energy producing reactions Energy Balance:

Measured *neutrino* fluxes at earth + oscillation physics nuclear reaction rates energy release in the sun

$$L_{\nu-\text{inferred}} \stackrel{?}{=} L_{h\nu}$$

Solar luminosity as measured by *photon* flux

TEST

- Fusion reactions are the sole source of energy production in the sun
- Photons take 40000 ys to reach us: Neutrinos take 8 min. The two measurements the suns energy at two different times
- 3, The neutrino oscillation model is correct & no other physics involved;

LENS Sterile

Cr source inside LENS

[C. Grieb, J. Link, RSR PRD 75, 093006 (2007)

Observe the Pee wave FROM Cr nu reactions inside the granular structure of LENS

Good for range of masses with Wave lengths of the order of Cell/detector dimensions

Statistical precision of oscillation parameter measurement in LENS

Raghavan—Nu2010

Active – Sterile Oscillation Sensitivity with LENS

