Radio-detection of Cosmic Neutrinos

Spencer Klein, LBNL & UC Berkeley

GZK Neutrinos Radiodetection The moon as a cosmic v target ANITA – floating over Antarctica Future experiments in Antarctic ice Conclusions

Probing the EHE Cosmos

- At energies above 4×10^{19} eV energies, only v have a cosmic (> 100 Mpc) range.
 - Other particles interact with the 3K cosmic microwave background radiation
 - $\sim \gamma$ pair produce & heavier nuclei photodissociate
- Protons are excited to Δ^+

e+e-

Greisen-Zatsepin-Kuzmin (GZK) interactions

 γ (3⁰K) - 2 v_{μ} , 1 v_{e}

- v from in-flight p $\rightarrow \Delta^+$ excitation are 'GZK neutrinos'
 - "Guaranteed" v signal"
- Protons & nuclei bend in interstellar magnetic fields ACCERETATON AGN?

v Oscillations

1 ν_{μ} :1 $\nu_{e,:}$ 1 ν_{τ}

GZK Neutrinos

- Flux depends on cosmic-ray spectrum & composition
- v energy spectrum probes cosmic evolution out to redshift ~ 3-5
 - As redshift increases, the cosmic microwave photons are more energetic
 - Protons interact at lower energies.
- v spectrum peaks just below 10^{19} eV (v_e, v_μ) with a 2nd peak at 10^{16} eV (v_e)
 - All experiments focus on higher energy
 peak
- v from π ,K decay have $v_e:v_\mu:v_\tau = 1:2:0$
 - Oscillations alter this to a nearly 1:1:1 ratio

Figure 4. Contribution of different redshifts to the cosmogenic neutrino flux at 10^{16} , 10^{18} , and 10^{20} eV.

Neutrino Interactions

- Cross-section is large enough so that v are absorbed in earth
 - v are either horizontal or down-going
 - - Sensitive to low-x parton distributions & some new physics
- Radio signals come from EM and hadronic showers
- 20% of neutrino energy goes into a hadronic shower
- 80% of v_e energy produces an electromagnetic shower
 - EM showers are elongated by LPM effect, altering radio emission
 - Many higher energy (>10²⁰ eV) experiments ignore v_e showers
- For E_v > 10²⁰ eV, e & γ interact hadronically, limiting growth in shower length

L. Gerhardt & SK, 2010

Radio Emission from Showers

Showers contain ~ 20% more e⁻ than e⁺

- Compton scattering of atomic e⁻ in target
- Positron annihilation on atomic e⁻
- For wavelengths > transverse size of the shower, the net charge emits Cherenkov radiation coherently.
 - Radio energy ~ E_v^2
 - Maximum frequency ~ few GHz
 - Medium dependent
 - Radiation at Cherenkov angle
 - Angular distribution broadens at lower frequencies.
- Studies with 25 GeV e⁻ beams at SLAC incident on salt, sand and ice targets
 - Confirmed theoretical calculations

SLAC data:D. Saltzberg *et al.*, PRL **86**, 2802 (2001) Angles: O. Scholten et al. J.Phys.Conf.Ser. **81**, 012004 (2007)

Emission Angle

Zooming in on Neutrinos

- Radio waves from the moon
 - ♦ 240,000 km range increases threshold to >>10²⁰ eV
 - Above most of GZK energy spectrum
- FORTE satellite: radio pulses from Greenland
- ANITA Balloon Experiment circled Antarctica
 - \blacklozenge Looking down, for ν interactions in ice
 - Up to 650 km from detector
 - Closer than the moon; threshold 10^{18.5}-10¹⁹ eV
 - Upper portion of GZK peak
 - Antennas Embedded in Antarctic ice
 - Pioneered by RICE experiment
 - Detectors can reach 10¹⁷ eV threshold,
 - Most of the GZK spectrum
 - ARA and ARIANNA experiments at prototype stage

Lunar Signals

- Sensitive volume depends on frequency
 - Radio absorption length ~ 9 m/f(GHz) sets maximum sensitive depth
 - High frequency searches see radio waves near the Cherenkov cone - near edge (limb) of moon
 - Lower frequency searches see a broader angular range
 - Larger active volume
- But... there is more radio energy at high frequencies
- Backgrounds from cosmic-ray moon showers

Lower frequency Experiments

- NuMoon @ Westerbork 64 m dish
 113-175 MHz
 - No events in 47 hours of observation
- Low frequency array for radio astronomy (LOFAR)
 - ♦ 36 stations in Northwest Europe
 - 120-240 MHz 48 antennas/station
 - 10-80 MHz 96 antennas/station
 - Square Kilometer Array
 - Proposed radio telescope array with 1 km² collecting area
 - In South Africa or Australia

Higher Frequency Experiments

- Lunaska @ Australia Telescope Compact Array
 - ♦ 6 nights of data with 6 22 m dishes
 - Beam size matches the moon
 - ♦ 600 MHz bandwidth (1.2-1.8 GHz)
 - De-dispersion filter needed
- Resun
 - 45 hours of data with 4 25-m
 VLA (very large array) dishes
 - ♦ 1.45 GHz
 - ♦ 50 MHz bandwidth
 - Resun-B is planned

Lunar results

- Thresholds >> 10²⁰ eV
 - Small fraction of GZK spectrum
 - Probes exotic models, like topological defects
- Multi-dish apparatus reach lower thresholds
- Lower frequency experiments (NuMoon) have higher thresholds, but a larger effective volume, givin(them lower limits
- Lunaska (ATCA) presented two limits for different models of lunar surface roughness

ANITA Balloon

- Two flights
 - ♦ 35 day flight in 2006/7
 - ♦ 31 day flight in 2008
 - Altitude ~ 35 km
- 40 (32) horn antenna search for radio pulses out to the horizon (~ 650 km)
 - Separate channels for vertical and horizontal polarization
 - 26.7 M trigger on broadband pulses
 - Mostly thermal noise
- Calibrations from buried transmitters buried measure signal propagation through ice, firn and snow-air interface.

ANITA Results

- Cuts remove thermal, payload & anthropogenic noise, and misreconstructions
- 5 events remain
 - 3 horizontally polarized events are likely reflected signals from cosmicray air showers
- 2 vertically polarized events are consistent with signal
 - Expected background 1 ± 0.4
- Upper limit constrains 'interesting' GZK models
- ANITA-3 flight requested w/ more antennas and better trigger

Antarctic In-Ice Detectors

- Sensitive to most of GZK spectrum
 - ♦ Key to probe cosmic evolution
 - Thresholds ~ 10¹⁷⁻¹⁸ eV
- Planned Target Volume 100 km³
 - \blacklozenge 100 GZK ν in 3-5 years
 - \clubsuit Measure σ_{vN}
- Two funded proposals funded for prototype installations
 - Sensitivity scales with \$\$\$
 - -- > No plots showing effective area...
 - ARA at the South Pole
 - ARIANNA on the Ross Ice Shelf
- Logistics in Antarctica can be tough
 - ♦ Winter power...

Plot by Amy Connolly

Askaryan Radio Array (ARA)

- Radio antenna clusters in 200 m deep holes at the South Pole
 - Clusters on 1-1.5 km triangular grid
- Series of prototypes deployed in IceCube holes
- Attenuation length > 500 m
 - Measurement sensitive to reflection E coefficient of ice-rock interface
- Electronics under discussion
 - Possible variation: more, but simpler channels, with time-overthreshold electronics
- Hole drilling and power options being studied

Poster by Kara Hoffman

ARA stations and antenna clusters

ARIANNA concept

- In Moore's Bay on the Ross Ice Shelf
 - ~ 570 m of ice floating on seawater
 - The smooth ice-water interface reflects radio waves like a mirror
 - 110 km from McMurdo station
- Sensitive to downward-going neutrinos
 - ♦ Larger solid angle
- Reflection increases collection area

Signal reflection from interface

- Stations with 4-8 dipole antennas in shallow trenches
 - 4-8 m antenna separation gives directional info
 - Orientations measure pulse polarization

ARIANNA in the Field

- Site characteristics studied in 2007 & 2009
 - ◆ Ice thickness 572 ± 6 m
 - Radio attenuation length ~ 500 m
 - Ice-water interface attenuation < 3 db</p>
- Prototype deployed in Dec. 2009
 - ♦ 4 Log-periodic dipole antennas

 - ~ 2 GS/s waveform digitizer readouts
 - ♦ Triggered on >=2/4 antennas
 - After temporary internet connection was removed, triggers were thermal noise
 - Solar and wind power generators
 - It worked well until the sun set
 - Iridium Modem
- Design of a 7-station array is mostly funded and in progress
 - L. Gerhardt et al., arXiv:1005.5193;
 - D. Saltzburg et al., submitted to Astropart. Phys.

ARIANNA in the Field

- Site characteristics studied in 2007 & 2009
 - ◆ Ice thickness 572 ± 6 m
 - Radio attenuation length ~ 500 m
 - Ice-water interface attenuation < 3 db</p>
- Prototype with 4 antennas, 2 GS/s waveform digitizer readouts, wind and solar power, Iridium modem
 - Deployed in Dec. 2009 for 1 year
 - Log-periodic dipole antennas
 - ∽ ~ 50 MHz to 1 GHz
 - Triggered on >=2/4 antennas
 - After temporary internet connection was removed, triggers were thermal noise
 - It worked well until the sun set
- Design of a 7-station array is mostly funded and in progress
 - L. Gerhardt et al., arXiv:1005.5193;
 - D. Saltzburg et al., submitted to Astropart. Phys.

ARA and ARIANNA

Factor	ARA	ARIANNA
Radio Atten.Length	500-2000 m ?	300-500 m
Acceptance	Horizontal	Horizontal + Downgoing
Logistics	Drilling, South Pole - 2800 m elevation	Green Field Site

Conclusions

- Neutrino interactions at energies above 10¹⁷ eV produce substantial coherent radio Cherenkov emission.
 - The radio energy increases as the square of the neutrino energy.
 - These signals have been studied in beam tests at SLAC.
- Many experiments have searched for radio emission from cosmic neutrino interactions.
 - Radio-telescope arrays have searched for signals of n interactions in the moon, with a threshold E > 10²⁰ eV.
 - The ANITA balloon experiment has set limits that constrain current predictions on the GZK neutrino flux.
 - The proposed ARIANNA and ARA radio detectors will emplace radio antennas on the Ross Ice Shelf and at the South Pole respectively.
 - Sensitive to the entire GZK v energy range
 - Can probe cosmic evolution of high-energy sources.
 - They will also measure σ_{vN} at EHE energies

UHE Neutrino Posters

- Recent Results and Future Prospects of the South Pole Acoustic Test Setup
 - Rolf Nahnhauer
- UHE neutrino detection with the surface detector of the Pierre Auger Observatory
 - ♦ Jose Luis Navarro
- New Results from the ANITA Search for Ultra-High Energy Neutrinos
 - Abigail Vieregg
- ANITA and the Highest Energy Cosmic Rays
 - Eric Grashorn
- The Askaryan Radio Array
 - ♦ Kara Hoffman
- The GEM-EUSO Mission to Explore the Extreme Universe
 - Gustavo Medina Tanco
- A small Air Shower Particle Detector Array dedicated to UHE neutrinos
 - Didier Lebrun

Backup Slides

Shower Studies @ SLAC

- Pulses of 10¹⁰ 25 GeV e- were directed into a large cube of ice
 - Radiation studied by ANITA detector
- Frequency & angular distributions matched theory
 - Refraction affects angular dist.
- Previous expts. with salt and sand targets

ANITA Collab., 2007

Ray Tracing in Antarctic Ice

- The varying density near the surface causes radio waves to refract
- Density profile measured with boreholes.
- Slowest transition to pure ice in central **Antarctica**

Ray tracing, depth=-200

Z Depth (meters) 0 0 0

-150

-200

-250

0

Figure 2. Firn density versus depth at three polar locations: the Ross Ice Shelf (RIS) and Vostok Station in Antarctica and Central Greenland (CG).