

Neutrino 2010 -Athens, Greece, June 16, 2010

Status of the KM3NeT Project

Petros A. Rapidis

National Center for Scientific Research "Demokritos

- The Challenge
- Technical options
- Physics sensitivity
- Resources/timeline ...

What is KM3NeT? – Why KM3NeT

What:

- Future cubic-kilometre km³ scale
 neutrino telescope in the
 Mediterranean Sea
 - Why? The previous two speakers made the case!
- Exceeds Northern-Hemisphere telescopes by factor ~50 in sensitivity
- Exceeds IceCube sensitivity by substantial factor
- Focus: Neutrino astronomy in the energy range from 1 TeV to the 100 TeV, and HE neutrinos (~ PeV)
- Provides node for earth and marine sciences

The Objectives

Central physics goals:

- Investigate neutrino "point sources" in energy regime 1-100 TeV
- Look for very high energy neutrinos (PeV's)
- Complement IceCube field of view
- Exceed IceCube sensitivity

Operational aspects:

- Construction time ≈4 years
- Operation over at least 10 years without "major maintenance"

The CDR and the TDR (soon)

- Three different complete design options worked out to verify functionality and allow for optimisation (a path to convergence)
- Simulation studies to quantify sensitivities
- Decision on common technology platforms

KM3NeT

Conceptual Design for a Deep-Sea Research
Infrastructure Incorporating a
Very Large Volume Neutrino Telescope
in the Mediterranean Sea

Bar design

Triangular cluster

Multi-pmt strings

The "classical" Optical Module: One PMT, no Electronics

Evolution from pilot projects:

- 8-inch PMT, increased quantum efficiency (instead of 10 inch)
- 13-inch glass sphere (instead of 17 inch)
- no valve (requires "vacuum" assembly)
- no mu-metal shielding

OM with many small PMTs

- 31 3-inch PMTs in 17-inch glass sphere (cathode area~ 3x10" PMTs)
 - 19 in lower, 12 in upper hemisphere
 - Suspended by compressible foam core
- 31 PMT bases (total ~140 mW) (D)
- Front-end electronics (B,C)
- Al cooling shield and stem (A)
- Single penetrator
- 2mm optical gel

Front-end Electronics: Time-over-threshold

From the analogue signal to time stamped digital data:

Data Network

- All data to shore:
 - Full information on each hit satisfying local condition (threshold) sent to shore
- Overall data rate ~ 100-300 Gbit/s
- Data transport:
 - Optical point-to-point connection shore-OM
 Optical network using DWDM and multiplexing
 Served by lasers on shore
 Allows also for time calibration of transmission delays
- <u>Deep-sea components</u>:
 Fibres, modulators, mux/demux, optical amplifiers (all standard and passive)

Deployment Strategy

- All three mechanical solutions:
 Compact package deployment self-unfurling
 - Eases logistics
 - Speeds up and eases deployment;
 several DUs can be deployed in one operation
 - Self-unfurling concept for all three mechanical structures;
 needs to be thoroughly tested and verified
- Connection to seabed network by ROV

A Flexible Tower Packed for Deployment

Compactifying Strings

Slender string rolled up for self-unfurling (tested in Dec. 2009):

A Work Platform: Delta Berenike

Sea-Floor Plant

Requirements:

- Distribute power
- Support data network
- Slow control communication

Structure:

- Hierarchical topology
- Primary & secondary junction boxes
- Commercial cables and connectors
- Installation requires
 ROVs

Example configuration:

- Layout and topology:
 - Depends on DU design, deployment procedure and "detector footprint"
 - Important for risk minimisation and maintainability
 - Other topologies are considered

Sky coverage for detectors located in the Mediterranean Sea

Visibility for a detector in the Mediterranean with 2π downward coverage; dark (light) blue areas are visible at least 75% (25%) of the time.

Candidate Sites

- Locations of the three pilot projects:
 - ANTARES: Toulon
 - NEMO: Capo Passero
 - NESTOR: Pylos *
- Long-term site characterisation measurements performed
- Site decision requires scientific, technological and political input

A flavor of site studies ...

Similar maps for Toulon and Capo Passero

Bioluminescence

The 'other' sciences ... not to be ignored

Earth and marine science node

Objective: Design interface to instrumentation for marine biology, geology/geophysics, oceanography, environmental studies, alerts, ...

Examples:

- Lines of autonomous sensors such as seismographs
- Moorings containing suites of instruments to monitor surface water, water column, sea bed and subsea-floor in a coordinated manner
- Fixed structures with removable modules containing instruments such as cameras and flash lights, acoustic sensors and suites of oceanographic sensors such as the proposed ESONET standard instrumentation module
- Futuristic docking stations for gliders or autonomous underwater vehicles

Simulation Studies

Simulation

<u>Objective</u>: Determine detector sensitivity, optimise detector parameters;

Input: OM positions/orientations and functionality, readout strategy, environmental parameters

- Simulation (using existing software)

 fruitful cooperation with IceCube on software tools
 (software framework, auxiliaries, ...: Thank you!)
- Reconstruction (building on existing approaches)
- Focus on point sources

Reminder:

- Flexible towers with horizontal bars
- Slender strings with multi-PMT OMs
- Strings with triangular arrangements of PMTs

Optimisation Studies

Example: Sensitivity dependence on DU distance for flexible towers (for neutrino fluxes $\sim E^{-\alpha}$, no cut-off)

Detector Configurations

- Different DU designs
 - require different DU distance
 - differ in photocathode area/DU
 - are different in cost

different "detector footprints"

Angular Resolution

- Median angle between incoming neutrino and reconstructed muon
- dominated by kinematics up to ~1TeV

Effective Areas

- Flexible towers with bars and slender strings "in same ballpark"
- Driven by overall photocathode area

Red KM3NeT exclusion (solid) and discovery (dashed) reach for one year

(neutrino point sources with an E⁻² spectrum Both are estimated with the binned analysis method)

Black are the IceCube exclusion sensitivities for one year, estimated with the unbinned method (full line).

Shaded band - IceCube discovery a factor 2.5 to 3.5 above the exclusion line.

Time line

Conclusions

- A design for the KM3NeT neutrino telescope for ~250 M€ would <u>substantially</u> increase the physics potential of existing experiments
- Within at most 2 years, remaining design decisions have to be taken and the site question clarified
- Construction could start in ~ 2013 and data taking in 2-3 years time after that
- A brave new world in neutrino (astro)physics and neutrino astronomy will soon be arriving!

For more details

We have three posters on display ... highly recommended!

- Katerina Tzamariudaki (no 185)
 - KM3NET: A Large-Scale Underwater Neutrino Telescope
- Oleg Kalekin (no. 187)
 - Optical Modules and Readout Scheme for the KM3NeT Neutrino Telescope
- Tommaso Chiarusi (no 186)
 - Towards a Design for a Large Scale Underwater Neutrino Telescope, Test Deployments, and the Site Studies

Also a related poster is :

Apostolos Tsirigotis (no 196)

Tools and Methods for Underwater, High Energy Neutrino Telescopy

The end

backup and other picture slides follow