Phenomenology and Models

Mu-Chun Chen University of California at Irvine

The XXIV International Conference on Neutrino Physics and Astrophysics Neutrino 2010, Athens, Greece, June 14-19, 2010

What does the data tell us?

• Neutrino Oscillation Parameters
$$P(\nu_a \rightarrow \nu_b) = |\langle \nu_b | \nu, t \rangle|^2 \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$$

$$U_{MNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Latest Global Fit [<u>GS98</u>, Bari group, AGSS09] (1σ) Gonzalez-Garcia, Maltoni, Salvado (2010)

$$\sin^2 \theta_{23} = 0.463(0.415 - 0.530), \quad \sin^2 \theta_{12} = 0.319(0.303 - 0.335), \quad \sin \theta_{13} = 0.127(0.072 - 0.165)$$

$$\Delta m_{21}^2 = 7.59 \pm 0.20 \times 10^{-5} \text{ eV}^2 \qquad \Delta m_{31}^2 = \begin{cases} -2.36 \pm 0.11 \times 10^{-3} \text{ eV}^2 \\ +2.46 \pm 0.12 \times 10^{-3} \text{ eV}^2 \end{cases} \text{(Global Minima)}$$

• Tri-bimaximal Mixing Pattern Wolfenstein (1978); Harrison, Perkins, Scott (1999)

Mu-Chun Chen, UC Irvine

Theoretical Challenges

(i) Absolute mass scale: Why $m_v \ll m_{u,d,e}$?

- seesaw mechanism: most appealing scenario \Rightarrow Majorana
 - GUT scale (type-I, II) vs TeV scale (type-III, double seesaw)
- TeV scale new physics (extra dimension, extra U(1)) \Rightarrow Dirac or Majorana
- (ii) Flavor Structure: Why neutrino mixing large while quark mixing small?
 - seesaw doesn't explain entire mass matrix w/ 2 large, 1 small mixing angles
 - neutrino anarchy: no parametrically small number Hall, Murayama, Weiner (2000)
 - near degenerate spectrum, large mixing
 - predictions strongly depend on choice of statistical measure
 - <u>family symmetry</u>: there's a structure, expansion parameter (symmetry effect)
 - leptonic symmetry (normal or inverted)
 - quark-lepton connection ↔ GUT (normal)
- In this talk: assume 3 generations, no LSND
 - MiniBoone anti-neutrino mode: excess in low energy region consistent with LSND
 - 4th generation model: (3+3) consistent with experiments including MiniBoone Hou, Lee, arXiv:1004.2359

Origin of Flavor Mixing and Mass Hierarchy

- SM: 22 arbitrary parameters in Yukawa sector
- No foundamental orgin found or suggested
- Reduce number of parameters
 - Grand Unification
 - seesaw scale ~ GUT scale
 - quarks and leptons unified
 - 1 coupling for entire multiplet
 - \Rightarrow intra-family relations (e.g. SO(10))

Up-type quarks ⇔ Dirac neutrinos

Down-type quarks \Leftrightarrow charged leptons

- Family Symmetry
 - \Rightarrow inter-family relations (flavor structure)

Models for Tri-bimaximal Mixing

Neutrino mass matrix

 $M = \begin{pmatrix} A & B & B \\ B & C & D \\ B & D & C \end{pmatrix} \longrightarrow \begin{array}{c} \sin^2 2\theta_{23} = 1 \\ \theta_{13} = 0 \end{array}$

solar mixing angle NOT fixed

μ-τ symmetry: Petcov; Fukuyama, Nishiura; Mohapatra, Nussinov; Ma, Raidal; ...

S₃: Kubo, Mondragon, Mondragon, Rodriguez-Jauregui; Araki, Kubo, Paschos; Mohapatra, Nasri, Yu; ...

D4: Grimus, Lavoura; ...

• If $A + B = C + D \implies \tan^2 \theta_{12} = 1/2$ TBM pattern

mass matrix M diagonalized by UTBM

 $U_{TBM}^T M U_{TBM} = diag(m_1, m_2, m_3)$

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

A4: Ma, Rajasekaran; Altarelli, Feruglio; ...

Z₃ x Z₇: Luhn, Nasri, Ramond; ...

Mu-Chun Chen, UC Irvine

Phenomenology and Models

Neutrino 2010, Athens

• Smallest Symmetry to realize TBM \Rightarrow Tetrahedral group A₄

CP Violation

• CP violation ⇔ complex mass matrices

$$\overline{U}_{R,i}(M_u)_{ij}Q_{L,j} + \overline{Q}_{L,j}(M_u^{\dagger})_{ji}U_{R,i} \xrightarrow{\mathcal{CP}} \overline{Q}_{L,j}(M_u)_{ij}U_{R,i} + \overline{U}_{R,i}(M_u)_{ij}^*Q_{L,j}$$

- Conventionally, CPV arises in two ways:
 - Explicit CP violation: complex Yukawa coupling constants Y
 - Spontaneous CP violation: complex scalar VEVs <h>

A Novel Origin of CP Violation

M.-C.C., K.T. Mahanthappa Phys. Lett. B681, 444 (2009)

- Complex CG coefficients in $T' \Rightarrow$ explicit CP violation
 - real Yukawa couplings, real scalar VEVs
 - CPV in quark and lepton sectors purely from complex CG coefficients
 - no additional parameters needed ⇒ extrememly predictive model!

Model Predictions

M.-C.C., K.T. Mahanthappa Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

SU(5) T' • SU(5) x T': $10(Q, u^c, e^c)_L$: (T₁,T₂) ~ 2, T₃ ~ I

$$\overline{5}(d^c,\ell)_L$$
 : (F₁, F₂, F₃) ~ 3

(7+2) parameters for 22 masses, mixing angles, CPV measures

• effective neutrino mass matrix (2 parameters):

$$M_{\nu} = \frac{\lambda v^{2}}{M_{x}} \begin{pmatrix} 2\xi_{0} + u & -\xi_{0} & -\xi_{0} \\ -\xi_{0} & 2\xi_{0} & u - \xi_{0} \\ -\xi_{0} & u - \xi_{0} & 2\xi_{0} \end{pmatrix} \qquad V_{\nu}^{T} M_{\nu} V_{\nu} = \text{diag}(u + 3\xi_{0}, u, -u + 3\xi_{0}) \frac{v_{u}^{2}}{M_{x}}$$

rm diagonalizable:
• no adjustable parameters
• no adjustable parameters

Form diagonalizable:

- no adjustable parameters
- neutrino mixing from CG coefficients!

• mass sum rule:
$$m_1 - m_3 = 2m_2$$

 $\Delta m_{\odot}^2 \equiv |m_3|^2 - |m_2|^2$
 $\Delta m_{\odot}^2 \equiv |m_2|^2 - |m_1|^2$
 $\Delta m_{\odot}^2 \equiv -9\xi_0^2 + \frac{1}{2}\Delta m_{atm}^2 \longrightarrow \Delta m_{atm}^2 > 0$ normal hier

 $e^{2} = -12u_{0}\xi_{0}$ $^2 = -9\xi_0^2 - 6u_0\xi_0$

Mu-Chun Chen, UC Irvine

Model Predictions

M.-C.C., K.T. Mahanthappa Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

Charged Fermion Sector (7 parameters)

Sum Rules: Quark-Lepton Complementarity

Quark Mixing

Lepton Mixing

mixing parameters	best fit	3 o range	mixing parameters	best fit	3 o range
θ ^q ₂₃	2.36°	2.25º - 2.48º	θ^{e}_{23}	42.8°	35.5° - 53.5°
θ ^q ₁₂	12.88°	12.75º - 13.01º	$\boldsymbol{\theta}^{\mathrm{e}}_{12}$	34.4°	31.5º - 37.6º
θ ^q ₁₃	0.21°	0.17º - 0.25º	θ ^e ₁₃	5.6°	≤ 12.5°

• QLC-I
$$\theta_c + \theta_{sol} \cong 45^\circ$$
 Raidal, '04; Smirnov, Minakata, '04
(BM) $\theta^q_{23} + \theta^e_{23} \cong 45^\circ$

• QLC-II

 $\tan^2 \theta_{sol} \approx \tan^2 \theta_{sol,TBM} + (\theta_c / 2) * \cos \delta_e$

(TBM)

 $\theta^{e}_{13} \cong \theta_{c} / 3\sqrt{2}$ Ferrandis, Pakvasa; King; Dutta, Mimura; M.-C.C., Mahanthappa improved **δθ**₁₂ from SuperK possible

 testing these sum rules could be a more robust way to distinguish different models

Mu-Chun Chen, UC Irvine

Phenomenology and Models

Neutrino 2010, Athens

Form Dominance

M.-C.C., S.F. King, JHEP0906, 072 (2009)

- Form diagonalizability:
 - masses and mixing angles decouple
 - effective neutrino mass matrix depends on only \leq 3 parameters
- general type-I seesaw, without CPV:
 - effective neutrino mass matrix (symmetric, real) \Rightarrow 6 parameters
- Seesaw mechanism in RH Majorana diagonal basis:

 $M_{RR} = \operatorname{diag}(M_A, M_B, M_C) \qquad M_D = (A, B, C)$ $M_{eff}^{\nu} = M_D M_{RR}^{-1} M_D^T \qquad M_{eff}^{\nu} = \frac{AA^T}{M_A} + \frac{BB^T}{M_B} + \frac{CC^T}{M_C}$

• form diagonalizability if: $A_i = aU_{i1}, B_i = bU_{i2}, C_i = cU_{i3}$ light neutrino masses: $a^2/M_A, b^2/M_B, c^2/M_C$ U: MNS matrix $C_i = cU_{i3}$ $e.g. A_4, T' models:$ 2 flavons suffice for U = U_{TBM} alignment due to symmetry

Mu-Chun Chen, UC Irvine

Other Possibilities

- Tri-bimaximal Mixing Accidental or NOT? Albright, Rodejohann (2009); Abbas, Smirnov (2010)
 - current data precision: TBM can be accidental \Rightarrow open up other possibilities
- Golden Ratio for solar angle

 $\tan^2 \theta_{sol} = 1/\Phi^2 = 0.382$, (1.4 σ below best fit) $\Phi = (1 + \sqrt{5}) / 2 = 1.62$

- Dodeca Mixing Matrix from D₁₂ Symmetry
 - leading order: $\theta_{c} = 15^{\circ}, \ \theta_{sol} = 30^{\circ}, \ \theta_{atm} = 45^{\circ}$ $12 = 360^{\circ} / 30^{\circ} \Rightarrow Z_{12}$ $15^{\circ} \Rightarrow Z_{2}$ $\theta_{c} + \theta_{sol} = 45^{\circ}$ (not from GUT symmetry)

Z2 x Z2: Kajiyama, Raidal, Strumia, '07; A5: Everett, Stuart, '08; ...

Datta, Ling, Ramond, '03;

$$V_{\rm PMNS} = U_l^{\dagger} U_{\nu} = \begin{pmatrix} \cos\frac{\pi}{6} & \sin\frac{\pi}{6} & 0\\ -\frac{1}{\sqrt{2}}\sin\frac{\pi}{6} & \frac{1}{\sqrt{2}}\cos\frac{\pi}{6} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}}\sin\frac{\pi}{6} & \frac{1}{\sqrt{2}}\cos\frac{\pi}{6} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

breaking of D₁₂ :

$$\theta_c = 15^\circ \rightarrow 13.4^\circ$$

 $\theta_{sol} = 30^\circ + O(\epsilon), \ \theta_{13} = O(\epsilon)$

Mu-Chun Chen, UC Irvine

Curing FCNC Problem: Family Symmetry vs MFV

- low scale new physics severely constrained by flavor violation $\psi_{(0)} \sim e^{(1/2-c)ky}$
- Warped Extra Dimension
 - wave function overlap \Rightarrow naturally small Dirac mass
 - non-universal bulk mass terms (c) \Rightarrow FCNCs at tree level $\Rightarrow \Lambda > O(10)$ TeV
 - fine-tuning required to get large mixing and mild mass hierarchy
 - Minimal Flavor Violation M.-C.C., H.B. Yu (2008); quark sector: A. Fitzpatrick, G. Perez, L. Randall (2007)

 $C_e = aY_e^{\dagger}Y_e, \ C_N = dY_{\nu}^{\dagger}Y_{\nu}, \ C_L = c(\xi Y_{\nu}Y_{\nu}^{\dagger} + Y_eY_e^{\dagger})$

- T' symmetry in the bulk for quarks & leptons: M.-C.C., K.T. Mahanthappa, F. Yu (PLB2009); A4: Csaki, Delaunay, Grojean, Grossmann
 - TBM mixing: common bulk mass term, no tree-level FCNCs
 - TBM mixing and masses decouple: no fine-tuning
 - can accommodate both normal & inverted mass orderings
- Family Symmetry: alternative to MFV to avoid FCNCs in TeV scale new physics
 - many family symmetries violate MFV, possible new FV contributions

UV

First Beam Indresday, September 10, 2006 09:15 0 days 0 hours 0 minutes

About

▼ 2008 (34

esonaance

TeV Scale Seesaw and Non-anomalous U(1)

Mu-Chun Chen, UC Irvine

F-theory GUT

- strongly coupled Type-II B string theory (10D) \rightarrow N=1 SUSY (4D)
- matter fields live on 6D curves
- Yukawa interaction: intersection of three curves
 - strengths determined by gauge coupling $\varepsilon \sim \sqrt{\alpha_{GUT}}$ $M_*^4 = \alpha_{GUT}^{-1} M_{GUT}^4$
 - N_R far from SU(5) surface \Rightarrow suppression of m_{ν}
 - KK seesaw \Rightarrow effective neutrino mass matrix

$$\frac{\lambda_{(\nu)}^{\text{Maj}}}{\Lambda_{\text{UV}}} = \overline{y} \cdot \frac{1}{M} \cdot \overline{y}^{T} \sim \frac{\Sigma}{M_{\star}} \begin{pmatrix} \varepsilon^{2} & \varepsilon^{3/2} & \varepsilon \\ \varepsilon^{3/2} & \varepsilon & \varepsilon^{1/2} \\ \varepsilon & \varepsilon^{1/2} & 1 \end{pmatrix}$$

prediction for mixing and mass hierarchy

$$U_{PMNS} \sim \begin{pmatrix} 1 & \epsilon^{1/2} & \epsilon \\ \epsilon^{1/2} & 1 & \epsilon^{1/2} \\ \epsilon & \epsilon^{1/2} & 1 \end{pmatrix} \qquad \qquad \theta_{12} \sim \theta_{23} \sim \alpha_{GUT}^{1/4} \sim 30^{\circ},$$
$$\theta_{13} \sim \alpha_{GUT}^{1/2} \sim \theta_C \sim 0.2,$$

 $M_*^4 = \alpha_{GUT}^{-1} M_{GUT}^4$ string compactification scale $H = N_R L$

Bouchard, Heckman, Seo, Vafa (2009)

 $m_1: m_2: m_3 \sim \alpha_{GUT}: \alpha_{GUT}^{1/2}: 1$

SU(5)_{GUT}

normal hierarchy

• Flipped SU(5) (can come from F-theory): improved light threshold calculation

 $p \rightarrow e^+ \pi^0$: $\tau \sim (1-30) \times 10^{34} \text{ yr}$, within reach of HyperK, DUSEL

Li, Nanopoulos, Walker (2009)

Mu-Chun Chen, UC Irvine

Phenomenology and Models

Neutrino 2010, Athens

Conclusion

• QLC:

- current data \Rightarrow TBM mixing
- finite group family symmetry T' x SU(5):
 - group theoretical origin of mixing
 - CP violation from complex CG ciefficients

$$\delta$$
 = 227 degrees

$$\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot,TBM} + \frac{1}{2} \theta_c \cos \delta \qquad \qquad \theta_{13} \simeq \theta_c / 3\sqrt{2}$$

- Family Symmetry curing FCNC problem in low (TeV) scale new physics
- More precise measurements important for pinning down the underlying new physics