Phenomenology and Models

Mu-Chun Chen
University of California at Irvine

The XXIV International Conference on Neutrino Physics and Astrophysics Neutrino 2010, Athens, Greece, June 14-19, 2010

What does the data tell us?

- Neutrino Oscillation Parameters $\quad P\left(\nu_{a} \rightarrow \nu_{b}\right)=\left|\left\langle\nu_{b} \mid \nu, t\right\rangle\right|^{2} \simeq \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2}}{4 E} L\right)$

$$
U_{M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Latest Global Fit [GS98, Bari group, AGSS09] (1б) Gonzalez-Garcia, Maltoni, Salvado (2010)

$$
\begin{aligned}
\sin ^{2} \theta_{23} & =0.463(0.415-0.530), \quad \sin ^{2} \theta_{12}=0.319(0.303-0.335), \quad \sin \theta_{13}=0.127(0.072-0.165) \\
\Delta m_{21}^{2} & =7.59 \pm 0.20 \times 10^{-5} \mathrm{eV}^{2} \quad \Delta m_{31}^{2}=\left\{\begin{array}{l}
-2.36 \pm 0.11 \times 10^{-3} \mathrm{eV}^{2} \\
+2.46 \pm 0.12 \times 10^{-3} \mathrm{eV}^{2} \text { (Global Minima) }
\end{array}\right.
\end{aligned}
$$

- Tri-bimaximal Mixing Pattern Wolfenstein (1978); Harrison, Perkins, Scott (1999)

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \quad \begin{array}{ll}
\sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 \quad \sin ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 3 \\
\sin \theta_{13, \mathrm{TBM}}=0 . & \text { Best fit value using atm data only } \\
& \Rightarrow \theta_{13}=0 \quad \text { Wendell et al (2010) }
\end{array}
$$

Theoretical Challenges

(i) Absolute mass scale: Why $m_{V} \ll m_{u, d, e}$?

- seesaw mechanism: most appealing scenario \Rightarrow Majorana
- GUT scale (type-I, II) vs TeV scale (type-III, double seesaw)
- TeV scale new physics (extra dimension, extra $\mathrm{U}(1)) \Rightarrow$ Dirac or Majorana
(ii) Flavor Structure: Why neutrino mixing large while quark mixing small?
- seesaw doesn't explain entire mass matrix w/ 2 large, 1 small mixing angles
- neutrino anarchy: no parametrically small number Hall, Murayama, Weiner (2000)
- near degenerate spectrum, large mixing
- predictions strongly depend on choice of statistical measure
- family symmetry: there's a structure, expansion parameter (symmetry effect)
- leptonic symmetry (normal or inverted)
- quark-lepton connection \leftrightarrow GUT (normal)
- In this talk: assume 3 generations, no LSND
- MiniBoone anti-neutrino mode: excess in low energy region consistent with LSND
- 4th generation model: $(3+3)$ consistent with experiments including MiniBoone Hou, Lee, arXiv:1004.2359

Origin of Flavor Mixing and Mass Hierarchy

- SM: 22 arbitrary parameters in Yukawa sector
- No foundamental orgin found or suggested
- Reduce number of parameters
- Grand Unification
- seesaw scale ~ GUT scale
- quarks and leptons unified
- 1 coupling for entire multiplet
\Rightarrow intra-family relations (e.g. SO(10))
Up-type quarks \Leftrightarrow Dirac neutrinos
Down-type quarks \Leftrightarrow charged leptons
- Family Symmetry
\Rightarrow inter-family relations (flavor structure)

Models for Tri-bimaximal Mixing

- Neutrino mass matrix

$$
M=\left(\begin{array}{lll}
A & B & B \\
B & C & D \\
B & D & C
\end{array}\right) \longrightarrow \begin{gathered}
\sin ^{2} 2 \theta_{23}=1 \\
\theta_{13}=0
\end{gathered}
$$

solar mixing angle NOT fixed
μ-T symmetry: Petcov; Fukuyama, Nishiura; Mohapatra, Nussinov; Ma, Raidal; ...

S3: Kubo, Mondragon, Mondragon, RodriguezJauregui; Araki, Kubo, Paschos; Mohapatra, Nasri, Yu; ...

D4: Grimus, Lavoura; ...

- If $\mathrm{A}+\mathrm{B}=\mathrm{C}+\mathrm{D} \Rightarrow \tan ^{2} \theta_{12}=1 / 2$ TBM pattern
- mass matrix M diagonalized by UTBM

$$
\begin{gathered}
U_{T B M}^{T} M U_{T B M}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \\
U_{\text {TBM }}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
\end{gathered}
$$

A4: Ma, Rajasekaran; Altarelli, Feruglio; ...
$Z_{3} \times Z_{7}$: Luhn, Nasri, Ramond; ...

Double Tetrahedral T'Symmetry

- Smallest Symmetry to realize TBM \Rightarrow Tetrahedral group A_{4}
- even permutations of 4 objects

$$
\text { S: }(1234) \rightarrow(4321), \quad \text { T: }(1234) \rightarrow(2314)
$$

- invariance group of tetrahedron
- can arise from extra dimensions: 6D \rightarrow 4D Altarelli, Feruglio (2006)
- does NOT give quark mixing
- Double Tetrahedral Group T' Frampton, Kaphart (1995);
- inequivalent representations PLB652, 34 (2007); 681, 444 (2009)

- complex CG coefficients when spinorial representations are involved

CP Violation

- CP violation \Leftrightarrow complex mass matrices

$$
\bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{Q}_{L, j}\left(M_{u}^{\dagger}\right)_{j i} U_{R, i} \xrightarrow{\varrho_{\mathcal{P}}} \bar{Q}_{L, j}\left(M_{u}\right)_{i j} U_{R, i}+\bar{U}_{R, i}\left(M_{u}\right)_{i j}^{*} Q_{L, j}
$$

- Conventionally, CPV arises in two ways:
- Explicit CP violation: complex Yukawa coupling constants Y
- Spontaneous CP violation: complex scalar VEVs <h>

A Novel Origin of CP Violation

- Complex CG coefficients in $\mathrm{T}^{\prime} \Rightarrow$ explicit CP violation
- real Yukawa couplings, real scalar VEVs
- CPV in quark and lepton sectors purely from complex CG coefficients
- no additional parameters needed \Rightarrow extrememly predictive model!
a toy model

- scalar potential: Z_{3} symmetry $\Rightarrow\left\langle\Delta_{1}\right\rangle=\left\langle\Delta_{2}\right\rangle=\left\langle\Delta_{3}\right\rangle \equiv\langle\Delta\rangle$ real
- complex effective mass matrix

Model Predictions

- $\operatorname{SU}(5) \times T^{\prime}:$

$$
\begin{aligned}
\mathrm{SU}(5) & \mathrm{T}^{\prime} \\
10\left(Q, u^{c}, e^{c}\right)_{L} & :\left(\mathrm{T}_{\mathbf{1}}, \mathrm{T}_{2}\right) \sim 2, \mathrm{~T}_{3} \sim \mathbf{I} \\
\overline{5}\left(d^{c}, \ell\right)_{L} & :\left(\mathbf{F}_{\mathbf{1}}, \mathrm{F}_{2}, \mathrm{~F}_{3}\right) \sim \mathbf{3}
\end{aligned}
$$

(7+2) parameters for 22 masses, mixing angles, CPV measures

- effective neutrino mass matrix (2 parameters):

$$
\begin{aligned}
& \qquad M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right) \\
& \text { rm diagonalizable: } \\
& \text { - no adjustable parameters } \\
& \text { - neutrino mixing from CG coefficients! }
\end{aligned} V_{\nu}=U_{\nu} V_{\nu}=\operatorname{diag}\left(u+3 \xi_{0}, u,-u+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{x}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) .
$$

- mass sum rule: $\quad m_{1}-m_{3}=2 m_{2} \quad \Delta m_{\text {atm }}^{2} \equiv\left|m_{3}\right|^{2}-\left|m_{2}\right|^{2}=-12 u_{0} \xi_{0}$

$$
\Delta m_{\odot}^{2} \equiv\left|m_{2}\right|^{2}-\left|m_{1}\right|^{2}=-9 \xi_{0}^{2}-6 u_{0} \xi_{0}
$$

$$
\Delta m_{\odot}^{2}=-9 \xi_{0}^{2}+\frac{1}{2} \Delta m_{a t m}^{2} \longrightarrow \Delta m_{a t m}^{2}>0 \quad \text { normal hierarchy predicted!! }
$$

Model Predictions

- Charged Fermion Sector (7 parameters)

$$
\begin{aligned}
& M_{u}=(\begin{array}{ccc}
i g & \frac{1-i}{2} g & 0 \\
\frac{1-i}{2} g & g+\left(1-\frac{i}{2}\right) h & \stackrel{1}{[}) \\
0 & k & 1
\end{array} \underbrace{}_{t} v_{u} \quad M_{\mathrm{cb}} \quad M_{d}, M_{e}^{T}=\left(\begin{array}{ccc}
0 & (1+i) b & 0 \\
-(1-i) b & (1,-3) c & 0 \\
b & 1
\end{array}\right) y_{d} v_{d} \phi_{0} \eta_{0} \\
& \begin{array}{l}
\begin{array}{l}
\theta_{c} \simeq\left|\sqrt{m_{d} / m_{s}}-e^{i \alpha} \sqrt{m_{u} / m_{c}}\right| \sim \sqrt{m_{d} / m_{s}},
\end{array} \longrightarrow \theta_{12}^{e} \simeq \sqrt{\frac{m_{e}}{m_{\mu}}} \simeq \frac{1}{3} \sqrt{\frac{m_{d}}{m_{s}}} \sim \frac{1}{3} \theta_{c}
\end{array} \begin{array}{l}
\begin{array}{l}
\text { Georgi-Jarlskog relations } \Rightarrow V_{\mathrm{d}, \mathrm{~L}} \neq 1 \\
\mathrm{SU}(5) \Rightarrow \mathrm{M}_{\mathrm{d}}=\left(\mathrm{M}_{\mathrm{e}}\right)^{\top}
\end{array} \\
\Rightarrow \text { corrections to TBM related to } \theta_{c}
\end{array} \\
& \text { - Neutrino Sector (2 parameters) }
\end{aligned}
$$

$$
U_{\mathrm{MNS}}=V_{e, L}^{\dagger} U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
1 & -\theta_{c} / 3 & * \\
\theta_{c} / 3 & 1 & * \\
* & * & 1
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \quad \theta_{13} \simeq \theta_{c} / 3 \sqrt{2} \quad \begin{array}{cc}
\mathrm{CGs} \text { of } \\
\mathrm{S}(5) \& \mathrm{~T}^{\prime}
\end{array}
$$

Mu-Chun Chen, UC Irvine
Phenomenology and Models Neutrino 2010, Athens

Sum Rules: Quark-Lepton Complementarity

Quark Mixing			Lepton Mixing		
mixing parameters	best fit	3σ range	mixing parameters	best fit	3σ range
$\theta^{a}{ }_{23}$	$2.36{ }^{\circ}$	$2.25{ }^{\circ}-2.48^{\circ}$	$\theta^{\mathrm{e}}{ }_{23}$	$42.8{ }^{\circ}$	$35.5^{\circ}-53.5^{\circ}$
$\theta^{a}{ }_{12}$	$12.88{ }^{\circ}$	12.750 - 13.01°	$\theta^{\mathrm{e}}{ }_{12}$	$34.4{ }^{\circ}$	31.50-37.6 ${ }^{\circ}$
$\theta^{a}{ }_{13}$	0.21°	$0.17^{\circ}-0.25^{\circ}$	$\theta^{\mathrm{e}}{ }_{13}$	$5.6{ }^{\circ}$	$\leq 12.5{ }^{\circ}$

- QLC-I

$$
\theta_{\mathrm{c}}+\theta_{\text {sol }} \cong 45^{\circ}
$$

Raidal, '04; Smirnov, Minakata, '04
(BM)

$$
\theta a_{23}+\theta_{23} \cong 45^{\circ}
$$

- QLC-II

$$
\tan ^{2} \theta_{\text {sol }} \cong \tan ^{2} \theta_{\text {sol, TBM }}+\left(\theta_{\mathrm{c}} / 2\right)^{*} \cos \delta_{e}
$$ (TBM)

$$
\theta_{13} \cong \theta_{\mathrm{c}} / 3 \sqrt{ } 2 \quad \begin{aligned}
& \text { Ferrandis, Pakvasa; King; Dutta, } \\
& \text { Mimura; M.-C.C., Mahanthappa }
\end{aligned}
$$

improved $\delta \theta_{12}$ from Superk possible

- testing these sum rules could be a more robust way to distinguish different models

Form Dominance

- Form diagonalizability:
- masses and mixing angles decouple
- effective neutrino mass matrix depends on only ≤ 3 parameters
- general type-I seesaw, without CPV:
- effective neutrino mass matrix (symmetric, real) $\Rightarrow 6$ parameters
- Seesaw mechanism in RH Majorana diagonal basis:

$$
\begin{array}{lc}
M_{R R}=\operatorname{diag}\left(M_{A}, M_{B}, M_{C}\right) & M_{D}=(A, B, C) \\
M_{e f f}^{\nu}=M_{D} M_{R R}^{-1} M_{D}^{T} & M_{e f f}^{\nu}=\frac{A A^{T}}{M_{A}}+\frac{B B^{T}}{M_{B}}+\frac{C C^{T}}{M_{C}}
\end{array}
$$

- form diagonalizability if: $\quad A_{i}=a U_{i 1}, \quad B_{i}=b U_{i 2}, \quad C_{i}=c U_{i 3}$
e.g. A4, T' models:
light neutrino masses: $a^{2} / M_{A}, b^{2} / M_{B}, c^{2} / M_{C} \quad \cup$: MNS matrix 2 flavons suffice for $U=U_{\text {TBM }}$ alignment due to symmetry

Other Possibilities

- Tri-bimaximal Mixing Accidental or NOT? Albright, Rodejohann (2009); Abbas, Smirnov (2010)
- current data precision: TBM can be accidental \Rightarrow open up other possibilities
- Golden Ratio for solar angle
$\tan ^{2} \theta_{\text {sol }}=1 / \Phi^{2}=0.382$, (1.4σ below best fit)
$\Phi=(1+\sqrt{ } 5) / 2=1.62$

Datta, Ling, Ramond, '03;
Z2 x Z2: Kajiyama, Raidal, Strumia, '07;
A5: Everett, Stuart, '08; ...

- Dodeca Mixing Matrix from D_{12} Symmetry
J. E. Kim, M.-S. Seo, arXiv:1005.4684 [hep-ph]

$$
\begin{aligned}
& \text { leading order: } \\
& \begin{array}{r}
\theta_{\mathrm{c}}=15^{\circ}, \theta_{\mathrm{sol}}=30^{\circ}, \theta_{\mathrm{atm}}=45^{\circ} \\
\left.\begin{array}{r}
12=360^{\circ} / 30^{\circ} \Rightarrow Z_{12} \\
15^{\circ} \Rightarrow Z_{2}
\end{array}\right\} Z_{12} \times Z_{2}=D_{12}
\end{array}
\end{aligned}
$$

$\theta_{\mathrm{c}}+\theta_{\text {sol }}=45^{\circ}$ (not from GUT symmetry)
breaking of D_{12} :

$$
\theta_{c}=15^{\circ} \rightarrow 13.4^{\circ}
$$

$$
\theta_{\text {sol }}=30^{\circ}+O(\varepsilon), \theta_{13}=O(\varepsilon)
$$

Curing FCNC Problem: Family Symmetry vs MFV

- low scale new physics severely constrained by flavor violation $\quad \psi_{(0)} \sim e^{(1 / 2-c) k y}$
- Warped Extra Dimension
- wave function overlap \Rightarrow naturally small Dirac mass

- non-universal bulk mass terms (c) \Rightarrow FCNCs at tree level $\Rightarrow \Lambda>\mathrm{O}(10) \mathrm{TeV}$
- fine-tuning required to get large mixing and mild mass hierarchy
- Minimal Flavor Violation M.-C.C., H.B. Yu (2008); quark sector: A. Fitzpatrick, G. Perez, L. Randall (2007)

$$
C_{e}=a Y_{e}^{\dagger} Y_{e}, \quad C_{N}=d Y_{\nu}^{\dagger} Y_{\nu}, \quad C_{L}=c\left(\xi Y_{\nu} Y_{\nu}^{\dagger}+Y_{e} Y_{e}^{\dagger}\right)
$$

- T^{\prime} symmetry in the bulk for quarks \& leptons: M.-C.C., K.T. Mahanthappa, F. Yu (PLB2009);
- TBM mixing: common bulk mass term, no tree-level FCNCs
- TBM mixing and masses decouple: no fine-tuning
- can accommodate both normal \& inverted mass orderings
- Family Symmetry: alternative to MFV to avoid FCNCs in TeV scale new physics
- many family symmetries violate MFV, possible new FV contributions

TeV Scale Seesaw and Non-anomalous U(1)

M.-C. C., de Gouvea, Dobrescu (2006)

- $\operatorname{SM} \times \mathrm{U}(1)_{\mathrm{NA}}+3 \mathrm{~V}_{\mathrm{R}}$: charged under $\mathrm{U}(1)_{\mathrm{NA}}$ symmetry, broken by $\langle\phi>$
- U(1) na forbids usual dim-4 Dirac operator and dim-5 Majorana operator

$$
m_{L L} \sim \frac{H H L L}{M} \rightarrow M \sim 10^{14} \mathrm{GeV}
$$

- neutrino masses generated by very high dimensional operators

$$
m_{L L} \sim\left(\frac{\langle\phi\rangle}{M}\right)^{p} \frac{H H L L}{M} \rightarrow M \sim T e V, \quad \text { for large } p \quad \frac{\langle\phi\rangle}{M} \sim \text { not too small } \sim 0.1
$$

- anomaly cancellation: relate flavorful fermion charges
\Rightarrow predict mass hierarchy and mixing
- neutrinos can either be Dirac or Majorana
- TeV scale Z': probing flavor sector at LHC
M.-C. C., J.-R. Huang (2009)

F-theory GUT

Bouchard, Heckman, Seo, Vafa (2009)

- strongly coupled Type-II B string theory (10D) $\rightarrow \mathrm{N}=1$ SUSY (4D)
- matter fields live on 6D curves
- Yukawa interaction: intersection of three curves
- strengths determined by gauge coupling $\varepsilon \sim \sqrt{\alpha_{G U T}} \quad M_{*}^{4}=\alpha_{G U T}^{-1} M_{G U T}^{4}$
- N_{R} far from $S U(5)$ surface \Rightarrow suppression of m_{V}
- KK seesaw \Rightarrow effective neutrino mass matrix

$$
\frac{\lambda_{(v)}^{\mathrm{Maj}}}{\Lambda_{\mathrm{UV}}}=\bar{y} \cdot \frac{1}{M} \cdot \vec{y}^{T} \sim \frac{\Sigma}{M_{*}}\left(\begin{array}{ccc}
\varepsilon^{2} & \varepsilon^{3 / 2} & \varepsilon \\
\varepsilon^{3 / 2} & \varepsilon & \varepsilon^{1 / 2} \\
\varepsilon & \varepsilon^{1 / 2} & 1
\end{array}\right)
$$

- prediction for mixing and mass hierarchy

$$
U_{P M N S} \sim\left(\begin{array}{ccc}
1 & \epsilon^{1 / 2} & \epsilon \\
\epsilon^{1 / 2} & 1 & \epsilon^{1 / 2} \\
\epsilon & \epsilon^{1 / 2} & 1
\end{array}\right) \quad \theta_{12} \sim \theta_{23} \sim \alpha_{G U T}^{1 / 4} \sim 30^{\circ}, \quad m_{1}: m_{2}: m_{3} \sim \alpha_{G U T}: \alpha_{\text {Gur }}^{1 / 2}: 1
$$

- Flipped SU(5) (can come from F-theory): improved light threshold calculation $p \rightarrow \mathrm{e}^{+} \Pi^{0}: T \sim(1-30) \times 10^{34} \mathrm{yr}$, within reach of HyperK, DUSEL

Li, Nanopoulos, Walker (2009)
Mu-Chun Chen, UC Irvine
Phenomenology and Models

Conclusion

- current data \Rightarrow TBM mixing
- finite group family symmetry $\mathrm{T}^{\prime} \times \mathrm{SU}(5)$:
- group theoretical origin of mixing
- CP violation from complex CG ciefficients

$$
\delta=227 \text { degrees }
$$

- QLC:

$$
\tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, T B M}+\frac{1}{2} \theta_{c} \cos \delta \quad \theta_{13} \simeq \theta_{c} / 3 \sqrt{2}
$$

- Family Symmetry curing FCNC problem in low (TeV) scale new physics
- More precise measurements important for pinning down the underlying new physics

