Lepton Flavour Violation: an experimental review

Donato Nicolò

Università & INFN, Pisa

Neutrino 2010, Athens

16 June 2010

NEUTRINO 2010

ATHENS

Outline

- Theoretical hints
 - SUSY vs SM predictions for
 - LFV
 - · EDM
 - · MDM (g-2)
- Muon LFV: status and perspectives
 - $\mu \rightarrow e \gamma$ news
 - MEG
 - future plans in $\mu Z \rightarrow eZ$ conversion
 - Mu2e
 - · COMET
 - PRISM I+PRIME
- EDM
 - current results and future reach on
 - neutron
 - deuteron
 - muon
- Conclusions

LFV in the SM and beyond

• SM: Dirac v-oscillations \Rightarrow flavour mixing in lepton sector

• SUSY theories can give rise to LFV through radiative corrections

induced by mixing in the high energy sector

- mixing matrix may be proportional to

- PMNS (enhanced due to solar vs)
- CKM
- constrained by MEG also if $U_{e3} = 0$
- R. Barbieri et al., Nucl. Phys. B445(1995) 215
- J. Hisano, N. Nomura, Phys. Rev. D59 (1999)
- A.Masiero et al. Nucl. Phys. B649 (2003) 189
- L.Calibbi et al. Phys. Rev. D74 (2006) 116002
- J. Valle, this conference

LFV relation to EDM, 9-2

- Contribution to EDM, MDM of leptons (hadrons) from diagonal elements of the slepton (squark) mass matrix
- LFV processes induced by off-diagonal terms (depend on how SUSY breaking is generated and what kinds of LFV interactions exist at the GUT scale)

 $\Delta m_{\tilde{e}\mu}^2 \Delta m_{\tilde{e}\tau}^2$

- SUSY effect on g-2 → deviations from SM predictions
- an experimental clue: E821 results

$$\Delta a_{\mu} \equiv a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (297 \pm 79) \times 10^{-11}$$

LFV: an experimental review

G.W.Bennett et al. Phys.Rev.Lett. 92(2004) 1618102

 $\propto \Re(m_{\pi\pi}^2)$

 $\propto \Im(m_{\eta\eta}^2)$

 $\Delta a_u \neq 0$ associated with SUSY

$$\rightarrow$$
 BR $(\mu \rightarrow e\gamma) \ge 10^{-12}$

G.Isidori et al.

Phys. Rev. D75 (2007) 115019

→ strong physics case

$\mu^{+}\rightarrow e^{+}\gamma$: signal and background

signal

$$\theta_{e\gamma} = 180^{\circ}$$
 $E_e = E_{\gamma} = 52.8 \text{ MeV}$
 $t_e = t_{\gamma}$

background

accidental background dominant at high rate

> need to improve detection techniques and use continuous beam

Exp./Lab	Year	ΔE _e /E _e (%)	ΔΕ _γ /Ε _γ (%)	$\Delta t_{e\gamma}$ (ns)	$\Delta heta_{e\gamma}$ (mrad)	Stop rate (s ⁻¹)	Duty cycle(%)	BR (90% <i>C</i> L)
SIN	1977	8.7	9.3	1.4	-	5 × 10 ⁵	100	3.6 x 10 ⁻⁹
TRIUMF	1977	10	8.7	6.7	-	2 × 10 ⁵	100	1 × 10 ⁻⁹
LANL	1979	8.8	8	1.9	37	2.4×10^{5}	6.4	1.7×10^{-10}
Crystal Box	1986	8	8	1.3	87	4 × 10 ⁵	6÷9	4.9 x 10 ⁻¹¹
MEGA	1999	1.2	4.5	1.6	17	2.5 × 10 ⁸	6÷7	1.2 × 10 ⁻¹¹
MEG	2010	0.8	4	0.15	19	3×10^{7}	100	1 x 10 ⁻¹³

^{*}quoted resolutions are FWHM

The layout

The beam

- located at Paul Scherrer Institut (CH)
- the most intense in the World (> $3\times10^8\mu/s$ @ 2 mA)
- continuous (good for B_{acc} suppression)

surface muons (28 MeV/c)

The detector

Beam of $3 \times 10^7 \, \mu$ /sec stopped in a 175 μ m target

Liquid Xenon calorimeter for γ detection (scintillation)

Solenoid spectrometer & drift chambers for e⁺ momentum

Scintillation counters for e⁺ timing

Matter effects must be minimized in order not to spoil the resolution

Drift chamber

The run

Analysis strategy

- Decided to adopt a blind-box likelihood analysis strategy
 - blinding observables are E_{γ} and $\Delta t_{e\gamma}$

MEG sensitivity prospect

Limit published based on Run 2008 J.Adam et al., Nucl. Phys. B834(2010)1

Analysis of Run 2009 data going to be finalized → unblinding foreseen by next week

Computed sensitivity would significantly probe the "g-2" hint

	2008	2009	"Goal"
Gamma Energy (%)	2.0(w>2cm)	←	1.2
Gamma Timing (psec)	80	>67	43
Gamma Position (mm)	5(u,v)/6(w)	←	3.8(u,v)/5.9(w)
Gamma Efficiency (%)	63	←	60
e+ Timing (psec)	<125	←	50
e+ Momentum (%)	1.6	0.85	0.3-0.38(100%)
e+ Angle (mrad)	$10(\phi)/18(\theta)$	8(φ)/11(θ)	3.8-5.1
e+ Efficiency (%)	14	40	90
e+-gamma timing (psec)	148	<180	64
Muon Decay Point (mm)	3.2(R)/4.5(Z)	2.2(R)/3.1(Z)	0.9-1.1
Trigger efficiency (%)	66	88	100
Stopping Muon Rate (sec-1)	3×10 ⁷ (300µm)	2.9×10 ⁷ (300μm)	3×10 ⁷
DAQ time/Real time (days)	48/78	35/43	300/-
S.E.S @90% box	5×10 ⁻¹²	2.3×10 ⁻¹²	3.8×10 ⁻¹⁴
Expected N _{BG}	0.5	0.7	0.5
Sensitivity	1.3×10 ⁻¹¹	4 ×10 ⁻¹²	1.0×10 ⁻¹³
BR upper limit (obtained)	2.8×10 ⁻¹¹	-	-

$\mu^{-} \rightarrow e^{-}$ conversion

signal $\mu(A,Z) \rightarrow e(A,Z)$

$$e^{-\mu^{-}\gamma}$$

$$E_e = m_{\mu} - E_B$$

 $E_e = 105.4 \text{ MeV for Al}$

E_e = 104.3 MeV for Ti

 E_e = 94.9 MeV for Pb

Background (beam related)

Radiative Pion Capture

$$\pi$$
 (A,Z) $\rightarrow \gamma$ (A,Z-1)

Muon-decay In Orbit

$$\mu(A,Z) \rightarrow e \nu \nu(A,Z)$$

$$e^{-\mu^{-}}$$
 (A,Z)

Not limited by accidentals!

$\mu^{-}\rightarrow e^{-}$: SINDRUM II result

SINDRUM II parameters

- beam intensity $3 \times 10^7 \,\mu^{-/s}$

- μ^- momentum 53 MeV/c

- magnetic field 0.33T

- acceptance 7%

- momentum res. 2% FWHM

- S.E.S 3.3×10⁻¹³

- B($\mu \to e: Au$) 8x10⁻¹³

A. Van der Schaaf, NOON03

New proposals

- Mu2e at Fermilab based on MECO / MELC proposals Goal: B(μ +Al→e+Al) < 6×10⁻¹⁷ @90% CL
- COMET at J-PARC
 - aims at B($\mu \rightarrow e$) < 10⁻¹⁶ @90% CL
 - -to be upgraded to PRISM/PRIME

$\mu^{-}\rightarrow e^{-}$: strategy

Pulsed beam to eliminate prompt backgrounds

Spectrometer Performance

55, 91, & 105 MeV e⁻ from target

- Performance calculated using Monte
 Carlo simulation of all physical effects
- •Resolution dominated by multiple scattering in tracker ($\Delta p/p = 0.8\%$)
- Resolution function of spectrometer convolved with theoretical calculation of muon decay in orbit to get expected background.

LFV: an experimental review

$\mu^{-}\rightarrow e^{-}: PRISM beam$

- High intensity pulsed proton beam
- ·Pion capture solenoid
- ·Pion decay section
- •Phase rotation (muon energy spread reduction) with a FFAG ring \rightarrow smaller μ -target
- →better momentum resolution $(\Delta p/p = 0.3\%)$
- \rightarrow suppression of MIO background ($\propto \Delta E^{-5}$)

FFAG approved and financed

Fig.2 Schematic PRISM Layout

EDM potential reach

• As in the case of LFV, EDM predicted values are greatly enhanced in SUSY with respect to $SM \rightarrow$ any detection of an EDM \neq 0 is a signal for New Physics

particle	current limit (e cm)	future goal (e cm)	SM predicted (e cm)
n	2.9×10 ⁻²⁶	5×10 ⁻²⁸	< 10 ⁻³²
μ	2.0×10 ⁻¹⁹	10-24	< 10 ⁻³⁸
d		10-29	
р	7.9×10 ⁻²⁵	10-29	
e	1.6×10 ⁻²⁷		< 10 ⁻⁴¹
¹⁹⁹ Hg	3.1x10 ⁻²⁹	10-29	

correlation to muon g-2

$$d_{\mu}^{\text{NP}} \simeq 3 \times 10^{-22} \left(\frac{a_{\mu}^{\text{NP}}}{3 \times 10^{-9}} \right) \tan \phi_{CP} \text{ e} \cdot \text{cm}$$

 \rightarrow either $d_{\mu} \approx 10^{-22}$ e cm or the CP-phase is strongly suppressed (< 10^{-3})

Neutron EDM

- Measured at ILL (RAL/Sussex experiment) with
 - ultra-cold neutrons (UCN) trapped in vacuum with uniform, parallel (anti-) E and B fields
 - measurement of the spin Larmor frequency according to the Ramsey technique $h\nu=|2\mu_n B\pm 2d_n E|$
 - $d_n \neq 0$ \rightarrow precession frequency shifted as E-direction flips w.r.t. B
 - found $d_n < 2.9 \times 10^{-26}$ e cm (90% CL) C.A.Baker et al. Phys.Rev.Lett. 97 (2006)131801

Towards a new measurement at PSI

- Phase I
 - operation of old ILL set-up in situ (completed 2008)
 - shipping to PSI (02/2009)
- Phase II
 - installation+commissioning (completed 2009)
 - operation at PSI UCN source (2009-2011)
 - sensitivity goal: 5×10^{-27} e cm
- Phase III
 - commissioning of new apparatus "n2EDM" with
 - larger volume $(x\sqrt{5})$
 - longer running time (4y since 2011)
 - increased E-field strength (x2)
 - sensitivity goal: 5×10^{-28} e cm

Muon EDM

Makes use of spin precession in storage rings

$$\vec{\omega} = -\frac{e}{m} \left\{ a\vec{B} + \left(\frac{1}{\gamma^2 - 1} - a \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right\}$$

- Previous measurement at magic momentum ($\rightarrow \gamma = 29.3$)
 - EDM effects
 - tilt of the precession plane by an angle $\delta = \tan^{-1} \left(\frac{\eta \beta}{2a_n} \right)$ w.r.t. the ring
 - → up/down asymmetry

$$N^{\pm}(t) \propto [1 \mp A_{EDM} \sin(\omega t + \phi) + A_{\mu} \cos(\omega t + \phi)]$$

- increase by $\omega = \omega_a / \cos \delta$ of the precession frequency
- both effects are overwhelmed by precession due to g-2
- New idea: make the precession independent of g-2.
 - use radial electric field to counteract a_{\mu} ("frozen" spin) $E \simeq a B c \beta \gamma^2$
 - due to limited field strength (E < 2 MV/m), it is necessary to use low momentum muons (average p \approx 500 MeV/c)
 - G.W.Bennett et al., J-PARC-LOI-030109
 - method applicable to other charged particles (such as deuteron)
 - D. Anastassopoulos et al., AGS proposal, March 2008

Sensitivity to µEDM

- EDM-precession decoupled from MDM
 - spin rotates around a radial axis
 - → up/down asymmetry linearly increasing as a function of time

- Feasibility
 - uncertainty given by $\sigma_{\eta} = \frac{\sqrt{2}}{\gamma \tau(e/m) \beta BAP \sqrt{N}}$
 - need to maximize NP^2 (should be 10^{16} in order to achieve 10^{-24} e cm sensitivity)

EDM Signal Versus Time

- very intense muon beam from pion decays
- phase space rotation to reduce momentum spread $30\% \rightarrow 2\%$ (so as to fit the momentum acceptance window of the storage ring) \rightarrow PRISM II
- no proposal submitted yet

Conclusions

- LFV and EDM are sensitive probes of New Physics beyond the Standard Model
- If associated with SUSY-induced corrections, the observed discrepancy of muon anomaly w.r.t. the SM indicates relevant effects on both LFV decays and EDM
 - to be covered soon by MEG and nEDM at PSI
- An intensive programme of measurements has been proposed for the future
 - LFV
 - COMET, PRISM/PRIME
 - τ-decays at Super-B factories
 - EDM
 - Neutron
 - Deuteron
 - (muon)
- Strong case for experimental searches in all channels

$\mu^{-}\rightarrow e^{-}$: comparison

Background	SINDRUM	Mu2E	PRISM/PRIME	
μ decay in orbit MIO	Resolution 2%	Resolution .8%	Resolution .3%	
Radiative μ decay	Resolution 2%			
Beam e-	Low momentum	Pulsed beam + 10 ⁻⁹ extinction	FFAG	
μ decay in flight	Low momentum	Pulsed beam + 10 ⁻⁹ extinction	FFAG	
π decay in flight	Low momentum	Pulsed beam + 10 ⁻⁹ extinction	FFAG	
Radiative π capture RPC	PMC magnet	Pulsed beam + 10 ⁻⁹ extinction	FFAG	
Anti-proton induced	-	Pulsed beam + 10 ⁻⁹ extinction	FFAG	
Cosmic ray induced	Cosmic veto	Cosmic veto	n/a	

 $(E - E_B)^{-5}$

$\mu^{-} \rightarrow e^{-}$: Mu2e background

~ 0.45 background events

- for 10^7 s running time with 4×10^{13} proton/s
- sensitivity of ~ 5 signal events for $R_{\mu e} = 10^{-16}$

Source	Events	Comments
μ decay in orbit	0.25	$S/N = 20 \text{ for } R_{\mu e} = 10^{-16}$
Tracking errors	< 0.006	
Radiative μ decay	< 0.005	
Beam e-	< 0.04	
μ decay in flight	< 0.03	Without scattering in stopping target
μ decay in flight	0.04	With scattering in stopping target
π decay in flight	< 0.001	
Radiative π capture	0.07	From out of time protons
Radiative π capture	0.001	From late arriving pions
Anti-proton induced	0.007	Mostly from π^-
Cosmic ray induced	0.004	Assuming 10 ⁻⁴ CR veto inefficiency
Total Background	0.45	Assuming 10-9 inter-bunch extinction

The MEG collaboration

Univ. of Tokyo

X. Bai, T. Iwamoto, T. Mashimo, T. Mori, Y. Morita, H. Natori, Y. Nishimura, W. Ootani, K. Ozone, R. Sawada, Y. Uchiyama

KEK

T. Haruyama, K. Kasami, A. Maki, Y. Makida, S. Mihara, H. Nishiguchi, A. Yamamoto, K. Yoshimura Waseda Univ.

K. Deguchi, T. Doke, J. Kikuchi, S. Suzuki, K. Terasawa

INFN Pisa

A. Baldini, C. Bemporad, F. Cei, C. Cerri, L. Galli, G. Gallucci, M. Grassi, F. Morsani, D. Nicolò, A. Papa, R. Pazzi, F. Sergiampietri, G. Signorelli

INFN and Univ. of Genova

M. De Gerone, S. Dussoni, K. Fratini, F. Gatti, R. Valle

INFN and Univ. of Pavia

G. Boca, P. W. Cattaneo, G. Cecchet, A. De Bari, P. Liguori

INFN and Univ. of Roma I

G. Cavoto, G. Piredda, F. Renga, C. Voena, D. Zanello

INFN and Univ. of Lecce

M. Panareo

Paul Scherrer Institute

J. Egger, M. Hildebrandt, P.-R. Kettle, S. Ritt, M. Schneebeli

BINP Novosibirsk

L. M. Barkov, A. A. Grebenuk, D. N. Grigoriev, B. I. Khazin, N. M. Ryskulov

JINR Dubna

A. Korenchenko, N. Kravchuk, A. Moiseenko, D. Mzavia

 Σ ~40 FTEs

Univ. of California, Irvine

E. Baracchini, W. Molzon, C. Topchyan, V. Tumakov, F. Xiao

$\mu^{-} \rightarrow e^{-}$: PRIME detector

PRISM/PRIME parameters

- beam intensity $3 \times 10^{11} \, \mu$ -/s

- μ - momentum 68 MeV/c

- momentum res. 350 keV FWHM

- S.E.S 6×10⁻¹⁹

- $B(\mu \rightarrow e)$ 10⁻¹⁸

Preliminary, rough, estimates for a possible SPL pulsed muon beam

(J. Aysto et al., CERN-TH/2001-231,

A.Baldini, MultiMW may04)

- Macro duty cycle: 1.2 ms every 20 ms (6% duty cycle)
- By the help of a chopper 40 mA of protons in bursts of 200 ns can be provided every 2 μ s (good microstructure for mu-e conv)

>R.Garoby

- This corresponds to 1.5*10¹⁵ p/s @2.2 GeV (0.5 MW)
- An extinction factor of 10⁸ might be within reach (difficult to be measured): confirmation in 2007
- An additional 10³ might be added to the extinction factor by using a veto counter active only between the p bursts
- By using GHEISHA to scale $\#\pi/p$ from 8 to 2.2 GeV (HARP results needed) \rightarrow $10^{12}\,\mu/s$ (tungsten target) Sensitivity down to B= 10^{-18}
- Need of precise design/estimates

On demand

The likelihood function

- Likelihood function built in terms of the number of
 - signal,
 - radiative decay
 - uncorrelated background

events and their pdfs

• Each pdf is a function of 5 kinematical variables

$$\begin{split} & \mathsf{E}_{\mathsf{e}},\,\mathsf{E}_{\gamma},\,\delta\theta,\,\delta\phi,\,\dagger_{\mathsf{e}\gamma} \\ & \quad \mathcal{L}(N_{\mathrm{sig}},N_{\mathrm{RMD}},N_{\mathrm{BG}}) \\ & = \frac{N^{N_{\mathrm{obs}}}\exp^{-N}}{N_{\mathrm{obs}}!}\prod_{i=1}^{N_{\mathrm{obs}}}\left[\frac{N_{\mathrm{sig}}}{N}S + \frac{N_{\mathrm{RMD}}}{N}R + \frac{N_{\mathrm{BG}}}{N}B\right] \end{split}$$

- pdfs extracted from
 - data
 - MC tuned on the data

Likelihood test

- A "Feldman-Cousins" approach was adopted for the likelihood analysis
- Sensitivity (i.e. average expected 90% CL upper limit on assuming no signal) turns out to be
 - B < 1.3 × 10-11
- 90% CL upper limit from the sidebands
 - B < $(0.9: 2.1) \times 10^{-11}$

N_{sig} < 14.7 @90% CL

 N_{RMD} consistent with sideband estimate: 25^{+17}_{-16}

Physics motivation

- Charged-Lepton Flavour Violation (cLFV) processes, like $\mu\to e\gamma$, $\mu\to eee$, $\mu\to e$ conversion, and also $\tau\to e\gamma$, are negligibly small in the extended Standard Model (SM) with massive Dirac neutrinos (BR $\approx 10^{-50})$
- Super-Symmetric extensions of the SM (SUSY-GUTs) with right handed neutrinos and see-saw mechanism may produce LFV processes at significant rates
- cLFV decays are therefore a clean (no SM contaminated) indication of Super Symmetry

and

the expected BR are close to the experimental limits

The Run 2008 limit

From the 90 % C.L. upper bound on number of signal events: $N_{\text{Sig}} \leq 14.7$

we obtained the corresponding 90 % C.L. upper limit:

BR(
$$\mu^+ \to e^+ \gamma$$
) $\leq 3.0 \times 10^{-11}$

 \approx 2 times worse than the expected sensitivity. The probability of getting this result by a statistical fluctuation of the observed distributions is (3 \div 5) % (bad luck!)

J. Adam et al., Nucl. Phys. B834(2010)1

MEG sensitivity summary

Detector parameters

$$T = 2.6 \cdot 10^7 s$$
 $R_{\mu} = 0.3 \cdot 10^8 \, \frac{\mu}{s}$ $\frac{\Omega}{4\pi} = 0.09$

$$\varepsilon_e \approx 0.9$$
 $\varepsilon_{sel} \approx 0.9^{\frac{3}{2}} = 0.7$ $\varepsilon_{\gamma} \approx 0.6$ Cuts at 1,4×FWHM

Signal

$$N_{\text{sig}} = BR \cdot T \cdot R_{\mu} \cdot \frac{\Omega}{4\pi} \cdot \varepsilon_{e} \cdot \varepsilon_{\gamma} \cdot \varepsilon_{\text{sel}}$$

Single Event Sensitivity

$$SES = \frac{1}{T \cdot R_{\mu}} \cdot \frac{\Omega}{4\pi} \cdot \varepsilon_{e} \cdot \varepsilon_{\gamma} \cdot \varepsilon_{sel}$$

Backgrounds

$$BR_{\text{acc}} \propto R_{\mu}^2 \times \Delta E_e \times \Delta E_{\gamma}^2 \times \Delta \theta_{e\gamma}^2 \times \Delta t_{e\gamma} \approx 3 \times 10^{-14}$$
 $BR_{\text{corr}} \approx 3 \times 10^{-15}$

Upper Limit at 90% CL $BR(\mu \rightarrow e\gamma) \approx 1 \times 10^{-13}$

$$BR(\mu \rightarrow e\gamma) \approx 1 \times 10^{-13}$$

Discovery

4 events (P =
$$2\times10^{-3}$$
) correspond BR = 2×10^{-13}

Beam requirements

Experiment	\mathbf{q}_{μ}	N_{μ}	T_{μ}	ΔP_{μ} $/P_{\mu}$	$I_{\rm off}/I_{\rm on}$	δτ	Δ†	BR
μ⁺→ e ⁺ e ⁺ e ⁻	+	1017	< 4 (MeV)	< 10 %	DC	n/a	n/a	10-15
μ⁺ →e ⁺γ	+	1017	< 4 (MeV)	< 10 %	DC	n/a	n/a	10-15
μ⁻→e⁻ conv.	1	10 ²¹	< 80 (MeV)	< 5 %	< 10 ⁻¹⁰	< 100 ns	> 1 µs	10-19
μ⁻→e⁻ conv.	-	10 ²⁰	< 80 (MeV)	< 5 %	DC	n/a	n/a	10-19

Supplementary information

$\mu^{+} \rightarrow e^{+}\gamma$: correlated background

The correlated background is smaller than the accidental one

The correlated background

- has a complicate dependence on the photon (y) and positron (x) energy resolutions.
- ·depends linearly on the R_u
- is 3×10^{-15}

Bibliography

J.Aysto et al. CERN-TH/2001-231
NuFact03 proceedings
NuFact02 proceedings
MultiMW Workshop, May 2004
SINDRUM coll., W Bertl et al. Nucl.Phys. B260(1988)1
SINDRUM2 coll., W Honecker et al. Phys.Rev.Lett. 76(1996)200
MECO coll., BNL proposal AGS P940 (1997)
MEG coll., "The MEG proposal" (2002)

LFV in the Standard Model

Neutrino oscillations \Rightarrow flavour mixing in lepton sector

- •Extensions of SM with massive Dirac neutrinos allow Lepton Flavour Violation (LFV) processes, like $\mu{\to}e\gamma$, $\tau{\to}e\gamma$, $\mu{\to}eee$, $\mu{\to}e$ conversion with B \approx 10^{-50}
- ·Super-Symmetric extensions of the SM (SUSY-GUTs) with right handed neutrinos and see-saw mechanism may produce LFV processes at significant rates

A $\mu \rightarrow e \gamma$ decay is therefore a clean (no SM contaminated) indication of Super Symmetry but...

Are these rates accessible experimentally?

DC operation in Run 2008

- at turn-on (July 08) the system was fine 30/32 planes OK (@1850 V)
- HV deterioration observed during the Run; at the end
 - 11/32 planes OK (@1850 V)
 - 7/32 planes off-nominal voltage (1700 1800 V)

body of evidence for He-diffusion inside the HV distribution

DC performance

The rate of events with a reconstructed track decreases with the Run going on \rightarrow absolute e⁺-efficiency getting lower and lower (up to 25%)

LFV: an experimental review

Run 2009 stability

All planes working, 30/32 at nominal voltage (> 1800 V)

- no deterioration
 of DC stability during the
 Run (Sep-Dec 2009)
- measured rate compatible with full tracking efficiency

Positron momentum reconstruction

Reconstructed Spectrum (Michel Trig.)

From 2007 engineering run

Michel edge smeared by

- radiative corrections
- resolution

pdfs

Signal

- E_{y} from full signal simulation (response function tuned on the data)
- Ee from 3-gaussian fit on data
- $-\theta_{ev}$ from combined positron and gamma angular resolution (data fit)
- tev gaussian fit to RD data spectrum

RD

- E_e , E_γ , $\theta_{e\gamma}$ 3d-histo pdf from toy MC (including resolution and acceptance smearing)
- t_{ev} gaussian fit to RD data spectrum (as in the case of signal)

accidentals

- E_{γ} , $\theta_{e\gamma}$ from fit to the sidebands
- E_e from the data
- $t_{e\gamma}$ flat distribution

DC efficiency and normalization

- Relative efficiency (i.e. fraction of signal/Michel events) is almost constant during the run (in spite of DC deterioration)
- average ratio agrees with the expected fraction of e⁺ with p>50 MeV

it is possible to normalize the signal pdf by counting the number of Michel in the analysis window (events recorded during the normal Run with a pre-scaled trigger)

Improvements in Run 2009

- Sparks observed in the "aquarium" test station
- Solution:
 - New PCB layout and production
 - Better insulation of HV and GND layers
 - HV net on an internal layer with blind vias
 - 16 newly assembled modules
 - Individual test in He-atmosphere
 - Long-term (6,5 m) test on 2 modules → OK

LXe up-to-date

- LXe tank re-filled after several cycles of gas-phase purification
- at detector turn-on we found:
 - LY(y) improved by 30% w.r.t. end of Run2008 and in agreement with expectations
 - same LY(a) as Run2008

